Abstract
Background Proteome profile changes post-severe acute respiratory syndrome coronavirus 2 (post-SARS-CoV-2) infection in different body sites of humans remains an active scientific investigation whose solutions stand a chance of providing more information on what constitutes SARS-CoV-2 pathogenesis. While proteomics has been used to understand SARS-CoV-2 pathogenesis, there are limited data about the status of proteome profile in different human body sites infected by the sarscov2 virus. To bridge the gap, our study aims to profile the proteins secreted in urine, bronchoalveolar lavage fluid (BALF), gargle solution, and nasopharyngeal samples and assess the proteome differences in these body samples collected from SARS-CoV-2-positive patients.
Materials and methods We downloaded publicly available proteomic data from (https://www.ebi.ac.uk/pride/). The data we downloaded had the following identifiers: i) PXD019423, n=3 from Charles Tanford Protein Center in Germany. ii) PXD018970, n=15 from Beijing Proteome Research Centre, China. iii)PXD022085, n=5 from Huazhong University of Science and Technology, China, and iv) PXD022889, n=18 from Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA. MaxQuant was used for the peptide spectral matching using humans, and SARS-CoV-2 was downloaded from the UniProt database (access date 13th October 2021).
Results The individuals infected with SARS-CoV-2 viruses displayed a different proteome diversity from the different body sites we investigated. Overall, we identified 1809 proteins across the four different sample types we compared. Urine and BALF samples had significantly more abundant SARS-CoV-2 proteins than the other body sites we compared. Urine samples had 257(33.7%) unique proteins, followed by nasopharyngeal with 250(32.8%) unique proteins. Garage solution and BALF had 38(5%) and 73(9.6%) unique proteins.
Conclusions Urine, gargle solution, nasopharyngeal, and bronchoalveolar lavage fluid samples have different protein diversity in individuals infected with SARS-CoV-2. Moreover, our data demonstrated that a given body site is characterized by a unique set of proteins in SARS-CoV-2 seropositive individuals.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study involves only openly available human data, which can be obtained from: https://www.ebi.ac.uk/pride/ with the following accession numbers: PXD019423, PXD018970, PXD022085, and PXD022889
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced are available online at https://doi.org/10.6084/m9.figshare.17198384.v2
6. Abbreviations
- ACE2
- Angiotensin-Converting Enzyme 2
- AKI
- Acute Kidney Injury
- BALF
- Bronchoalveolar lavage fluid
- FDR
- False Discovery Rate
- IPX
- Integrated Proteome resources
- LFQ
- Label-Free Quantitation
- PCA
- Principal Component Analysis
- PRIDE
- Protein Identification Database
- PSM
- Peptide Spectral Match
- SARS-CoV-2
- Severe Acute Respiratory Syndrome Coronavirus 2.