Abstract
In the definition of fruitful strategies to contrast the worldwide diffusion of SARS-CoV-2, maximum efforts must be devoted to the early detection of dangerous variants. An effective help to this end is granted by the analysis of deep sequencing data of viral samples, which are typically discarded after the creation of consensus sequences. Indeed, only with deep sequencing data it is possible to identify intra-host low-frequency mutations, which are a direct footprint of mutational processes that may eventually lead to the origination of functionally advantageous variants. Accordingly, a timely and statistically robust identification of such mutations might inform political decision-making with significant anticipation with respect to standard analyses based on con-sensus sequences.
To support our claim, we here present the largest study to date of SARS-CoV-2 deep sequencing data, which involves 220,788 high quality samples, collected over 20 months from 137 distinct studies. Importantly, we show that a rele-vant number of spike and nucleocapsid mutations of interest associated to the most circulating variants, including Beta, Delta and Omicron, might have been intercepted several months in advance, possibly leading to different public-health decisions. In addition, we show that a refined genomic surveillance system involving high- and low-frequency mutations might allow one to pin-point possibly dangerous emerging mutation patterns, providing a data-driven automated support to epidemiologists and virologists.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was partially supported by the Elixir Italian Chapter and the SysBioNet project, a Ministero dell'Istruzione, dell'Universita' e della Ricerca initiative for the Italian Roadmap of European Strategy Forum on Research Infrastructures and by the Associazione Italiana per la Ricerca sul Cancro (AIRC)-IG grant 22082. DR and FA were partially supported by a Bicocca 2020 Starting Grant. DR was also supported by a Premio Giovani Talenti of the University of Milan-Bicocca.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data analyzed in this study are available online at the National Center for Biotechnology Information (NCBI) or the European Nucleotide Archive (ENA).