Abstract
Numerous studies have shown that a prior SARS-CoV-2 infection can greatly enhance the antibody response to COVID-19 vaccination, with this so called “hybrid immunity” leading to greater neutralization breadth against SARS-CoV-2 variants of concern. However, little is known about how breakthrough infection (BTI) in COVID-19 vaccinated individuals will impact the magnitude and breadth of the neutralizing antibody response. Here, we compared neutralizing antibody responses between unvaccinated and COVID-19 double vaccinated individuals (including both AZD1222 and BNT162b2 vaccinees) who have been infected with the delta (B.1.617.2) variant. Rapid production of Spike-reactive IgG was observed in the vaccinated group providing evidence of effective vaccine priming. Overall, potent cross-neutralizing activity against current SARS-CoV-2 variants of concern was observed in the BTI group compared to the infection group, including neutralization of the omicron (B.1.1.529) variant. This study provides important insights into population immunity where transmission levels remain high and in the context of new or emerging variants of concern.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was funded by; Fondation Dormeur, Vaduz for funding equipment to KJD, Huo Family Foundation Award to MHM, KJD, MRC Genotype–to–Phenotype UK National Virology Consortium (MR/W005611/1 to MHM, KJD), and Wellcome Trust Investigator Award 106223/Z/14/Z to MHM. CG is supported by the MRC–KCL Doctoral Training Partnership in Biomedical Sciences (MR/N013700/1). This work was supported by the Department of Health via a National Institute for Health Research comprehensive Biomedical Research Centre award to Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. This study is part of the EDCTP2 programme supported by the European Union (grant number RIA2020EF–3008 COVAB). The views and opinions of authors expressed herein do not necessarily state or reflect those of EDCTP. This project is supported by a joint initiative between the Botnar Research Centre for Child Health and the European & Developing Countries Clinical Trials Partnership (KJD). Thank you to Philip Brouwer, Marit van Gils and Rogier Sanders for the Spike protein construct, Leo James and Jakub Luptak for the N protein, Wendy Barclay for providing the Spike plasmids and James Voss and Deli Huang for providing the Hela–ACE2 cells.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Collection of surplus serum samples was approved by South Central-Hampshire B REC (20/SC/0310).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
We have now measured neutralization activity against the omicron (B.1.1.529) variant of concern.
Data Availability
All data produced in the present work are contained in the manuscript