ABSTRACT
INTRODUCTION Despite the fact that abducens nerve palsy (ANP) is the most common ocular motor palsy, the literature on the respective saccade dynamics, both in the paretic (PE) and non-paretic eye (nPE), is scarce.
AIMS AND METHODOLOGY The aim of this study was to examine the maximum velocity, duration and accuracy of horizontal saccades, in individuals with unilateral ANP, and to compare them with normal controls. Binocular horizontal eye movements were recorded at 5°, 10° and 15°, using an infrared corneal reflection device from 21 adults with microvascular unilateral ANP during the acute and the chronic phase of the palsy, as well as 18 healthy adults. Non-parametric tests were used for statistical comparisons.
RESULTS The PE, when compared to the nPE, presents a slightly lower saccadic amplitude and velocity/amplitude ratio and a higher duration/amplitude ratio. The nPE, compared to the healthy eye (HE) of the control group, showed consistently amplitude gain >1 while the velocity/amplitude ratio did not differ in either session. The duration/amplitude ratio tended to be higher in the nPE. The prism dioptres of the PE did not appear to correlate with any parameter tested (amplitude gain, velocity/amplitude ratio, duration/amplitude ratio) of the open nPE, but the amplitude ratio was statistically lower during the first session when the nPE was kept covered and the duration/amplitude ratio decreased significantly.
CONCLUSIONS One of the main findings of the study is the increase in saccade duration during adaptation of ANP. Specifically, the nPE performed orthometric saccades with a longer duration than healthy controls. Given that the motor command reaches the ocular muscles by neural discharges with a “pulse-step” pattern, any adaptation reflects in a change of this pattern. Cerebellar learning leads to an increase in the pulse width of the neural discharge. This idiosyncratic response may be related to plastic changes in central structures that serve learning processes such as the cerebellum. Further research could provide more insight into the cerebellar plastic processes involved in the saccadic adaptation.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics Committee of the First Department of Neurology of the National and Kapodistrian University of Athens gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors