Abstract
Recently proposed time-gated DCS (TG-DCS) has significant advantages compared to conventional CW-DCS, but it is still in an early stage and clinical capability has yet to be established. The main challenge for TG-DCS is the lower SNR when gating for the deeper travelling late photons. Longer wavelengths, such as 1064nm have a smaller effective attenuation coefficient and a higher power threshold in humans, which significantly increases the SNR. Here, we demonstrate the clinical utility of TG-DCS at 1064nm in a case study on a patient with severe traumatic brain injury admitted to the neuroscience intensive care unit (NSICU). We showed a significant correlation between TG-DCS early (ρ = 0.67) and late (ρ = 0.76) gated against invasive thermal diffusion flowmetry. We also analyzed TG-DCS at high temporal resolution (50 Hz) to elucidate pulsatile flow data. Overall, this study demonstrates the first clinical translation capability of the TG-DCS system at 1064nm using superconducting nanowire single photon detector.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study was funded by NIH R01 (NIBIB Brain Initiative, 1R01EB031759), R03 (NINDS, 5R03NS115022), the Ohio Third Frontier to the Ohio Imaging Research and Innovation Network (OIRAIN).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Institutional Review Board (IRB) of the University of Cincinnati gave approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors