Summary
Introduction Globally, there have been more than 404 million cases of SARS-CoV-2, with 5.8 million confirmed deaths, as of February 2022. South Africa has experienced four waves of SARS-CoV-2 transmission, with the second, third, and fourth waves being driven by the Beta, Delta, and Omicron variants, respectively. A key question with the emergence of new variants is the extent to which they are able to reinfect those who have had a prior natural infection.
Rationale We developed two approaches to monitor routine epidemiological surveillance data to examine whether SARS-CoV-2 reinfection risk has changed through time in South Africa, in the context of the emergence of the Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529) variants. We analyze line list data on positive tests for SARS-CoV-2 with specimen receipt dates between 04 March 2020 and 31 January 2022, collected through South Africa’s National Notifiable Medical Conditions Surveillance System. Individuals having sequential positive tests at least 90 days apart were considered to have suspected reinfections. Our routine monitoring of reinfection risk included comparison of reinfection rates to the expectation under a null model (approach 1) and estimation of the time-varying hazards of infection and reinfection throughout the epidemic (approach 2) based on model-based reconstruction of the susceptible populations eligible for primary and second infections.
Results 105,323 suspected reinfections were identified among 2,942,248 individuals with laboratory-confirmed SARS-CoV-2 who had a positive test result at least 90 days prior to 31 January 2022. The number of reinfections observed through the end of the third wave in September 2021 was consistent with the null model of no change in reinfection risk (approach 1). Although increases in the hazard of primary infection were observed following the introduction of both the Beta and Delta variants, no corresponding increase was observed in the reinfection hazard (approach 2). Contrary to expectation, the estimated hazard ratio for reinfection versus primary infection was lower during waves driven by the Beta and Delta variants than for the first wave (relative hazard ratio for wave 2 versus wave 1: 0.71 (CI95: 0.60–0.85); for wave 3 versus wave 1: 0.54 (CI95: 0.45–0.64)). In contrast, the recent spread of the Omicron variant has been associated with an increase in reinfection hazard coefficient. The estimated hazard ratio for reinfection versus primary infection versus wave 1 was 1.75 (CI95: 1.48–2.10) for the period of Omicron emergence (01 November 2021 to 30 November 2021) and 1.70 (CI95: 1.44–2.04) for wave 4 versus wave 1. Individuals with identified reinfections since 01 November 2021 had experienced primary infections in all three prior waves, and an increase in third infections has been detected since mid-November 2021. Many individuals experiencing third infections had second infections during the third (Delta) wave that ended in September 2021, strongly suggesting that these infections resulted from immune evasion rather than waning immunity.
Conclusion Population-level evidence suggests that the Omicron variant is associated with substantial ability to evade immunity from prior infection. In contrast, there is no population-wide epidemiological evidence of immune escape associated with the Beta or Delta variants. This finding has important implications for public health planning, particularly in countries like South Africa with high rates of immunity from prior infection. Further development of methods to track reinfection risk during pathogen emergence, including refinements to assess the impact of waning immunity, account for vaccine-derived protection, and monitor the risk of multiple reinfections will be an important tool for future pandemic preparedness.
Competing Interest Statement
All authors have completed the ICMJE uniform disclosure form. CC and AvG have received funding from Sanofi Pasteur in the past 36 months. JRCP and KM serve on the Ministerial Advisory Committee on COVID-19 of the South African National Department of Health. The authors have declared no other relationships or activities that could appear to have influenced the submitted work.
Funding Statement
This work was supported by the South African Department of Science and Innovation and the National Research Foundation and the Wellcome Trust (grant number 221003/Z/20/Z) in collaboration with the Foreign, Commonwealth and Development Office, United Kingdom.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study has received ethical clearance from University of the Witwatersrand (Clearance certificate number M210752, formerly M160667) and approval under reciprocal review from Stellenbosch University (Project ID 19330, Ethics Reference Number N20/11/074_RECIP_WITS_M160667_COVID-19).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
This version of the manuscript has been revised with the following major changes: (1) we now present data through 31 January 2022, covering the full Omicron wave in South Africa, and (2) we fixed an inconsistency in the calculation of the time-varying infection and reinfection hazard coefficients that enhanced the apparent decrease in primary infection hazard. The latter change has a quantitative impact on the results, but the conclusions remain unchanged.
Data Availability
Data and code will be made available at https://github.com/jrcpulliam/reinfections. The following data are included in the repository: - Counts of reinfections and primary infections by province, age group (5-year bands), and sex (M, F, U) - Daily time series of primary infections and suspected reinfections by specimen receipt date (national) - Model output: posterior samples from the MCMC fitting procedure and simulation results Requests for additional data must be made in writing to the National Institute for Communicable Diseases, South Africa.