Abstract
Contact tracing is a key component of successful management of COVID-19. Contacts of infected individuals are asked to quarantine, which can significantly slow down (or prevent) community spread. Contact tracing is particularly effective when infections are detected quickly (e.g., through rapid testing), when contacts are traced with high probability, when the initial number of cases is low, and when social distancing and border restrictions are in place. However, the magnitude of the individual contribution of these factors in reducing epidemic spread and the impact of vaccination in determining contact tracing outputs is not fully understood. We present a delayed differential equation model to investigate how vaccine roll-out and the relaxation of social distancing requirements affect contact tracing practises. We provide an analytical criteria to determine the minimal contact tracing efficiency (defined as the the probability of identifying and quarantining contacts of symptomatic individuals) required to keep an outbreak under control, with respect to the contact rate and vaccination status of the population. Additionally, we consider how delays in outbreak detection and increased case importation rates affect the number of contacts to be traced daily. We show that in vaccinated communities a lower contact tracing efficiency is required to avoid uncontrolled epidemic spread, and delayed outbreak detection and relaxation of border restrictions do not lead to a significantly higher risk of overwhelming contact tracing. We find that investing in testing programs, rather than increasing the contact tracing capacity, has a larger impact in determining whether an outbreak will be controllable. This is because early detection activates contact tracing, which will slow, and eventually reverse exponential growth, while the contact tracing capacity is a threshold that will easily become overwhelmed if exponential growth is not curbed. Finally, we evaluate quarantine effectiveness during vaccine roll-out, by considering the proportion of people that will develop an infection while in isolation in relation to the vaccination status of the population and for different viral variants. We show that quarantine effectiveness decreases with increasing proportion of fully vaccinated individuals, and increases in the presence of more transmissible variants. These results suggest that a cost-effective approach during vaccine roll-out is to establish different quarantine rules for vaccinated and unvaccinated individuals, where rules should depend on viral trans-missibility. Altogether, our study provides quantitative information for contact tracing downsizing during vaccine roll-out, to guide COVID-19 exit strategies.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
JR is supported by a National Sciences and Engineering Research Council of Canada (NSERC) Undergraduate Student Research Award (USRA). AH acknowledges financial support from an NSERC Discovery Grant, RGPIN 2014-05413. MM and AH are supported by Canadian Network for Modelling Infectious Diseases (CANMOD) and the Department of Health and Community Services, Government of Newfoundland and Labrador. AH acknowledges further support from the NSERC Emerging Infectious Disease Modelling Consortium. AH and JB are supported by the Atlantic Association for Research in the Mathematical Sciences and the New Brunswick Health Research Foundation.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
ahurford{at}mun.ca, jrenault{at}mun.ca, jbaafi{at}mun.ca
Data Availability
All data produced in the present work are contained in the manuscript