Machine learning-supported interpretation of kidney graft elementary lesions in combination with clinical data
View ORCID ProfileMarc Labriffe, View ORCID ProfileJean-Baptiste Woillard, View ORCID ProfileWilfried Gwinner, Jan-Hinrich Braesen, View ORCID ProfileDany Anglicheau, View ORCID ProfileMarion Rabant, View ORCID ProfilePriyanka Koshy, View ORCID ProfileMaarten Naesens, View ORCID ProfilePierre Marquet
doi: https://doi.org/10.1101/2021.09.17.21263552
Marc Labriffe
1Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France
2Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, Limoges, France
Jean-Baptiste Woillard
1Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France
2Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, Limoges, France
Wilfried Gwinner
3Nephrology, Internal Medicine, Hannover Medical School, Hannover, Germany
Jan-Hinrich Braesen
4Institute for Pathology, Nephropathology Unit, Hannover Medical School, Germany
Dany Anglicheau
5Université de Paris, Paris, France
6INSERM U1151, Paris, France
7Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
Marion Rabant
8Department of Pathology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
Priyanka Koshy
9Department of Pathology, University Hospitals Leuven, Leuven, Belgium
Maarten Naesens
10Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
11Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
Pierre Marquet
1Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France
2Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, Limoges, France
Data Availability
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Posted September 22, 2021.
Machine learning-supported interpretation of kidney graft elementary lesions in combination with clinical data
Marc Labriffe, Jean-Baptiste Woillard, Wilfried Gwinner, Jan-Hinrich Braesen, Dany Anglicheau, Marion Rabant, Priyanka Koshy, Maarten Naesens, Pierre Marquet
medRxiv 2021.09.17.21263552; doi: https://doi.org/10.1101/2021.09.17.21263552
Machine learning-supported interpretation of kidney graft elementary lesions in combination with clinical data
Marc Labriffe, Jean-Baptiste Woillard, Wilfried Gwinner, Jan-Hinrich Braesen, Dany Anglicheau, Marion Rabant, Priyanka Koshy, Maarten Naesens, Pierre Marquet
medRxiv 2021.09.17.21263552; doi: https://doi.org/10.1101/2021.09.17.21263552
Subject Area
Subject Areas
- Addiction Medicine (380)
- Allergy and Immunology (697)
- Anesthesia (187)
- Cardiovascular Medicine (2817)
- Dermatology (241)
- Emergency Medicine (425)
- Epidemiology (12511)
- Forensic Medicine (10)
- Gastroenterology (797)
- Genetic and Genomic Medicine (4380)
- Geriatric Medicine (398)
- Health Economics (711)
- Health Informatics (2824)
- Health Policy (1042)
- Hematology (372)
- HIV/AIDS (892)
- Medical Education (412)
- Medical Ethics (113)
- Nephrology (460)
- Neurology (4144)
- Nursing (219)
- Nutrition (614)
- Oncology (2182)
- Ophthalmology (620)
- Orthopedics (253)
- Otolaryngology (316)
- Pain Medicine (262)
- Palliative Medicine (81)
- Pathology (483)
- Pediatrics (1166)
- Primary Care Research (481)
- Public and Global Health (6727)
- Radiology and Imaging (1479)
- Respiratory Medicine (895)
- Rheumatology (429)
- Sports Medicine (359)
- Surgery (468)
- Toxicology (57)
- Transplantation (198)
- Urology (173)