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Abstract 
Background The Banff classification standardizes the diagnoses of kidney transplant rejection 

based on histological criteria. Clinical decisions are generally made after integration of the 

Banff diagnoses in the clinical context. However, interpretation of the biopsy cases is still 

heterogeneous among pathologists or clinicians. Machine Learning (ML) algorithms may be 

trained from expertly assessed cases to provide clinical decision support. 

Methods The ML technique of Extreme Gradient Boosting learned from two large training 

datasets from the European programs BIOMARGIN and ROCKET (n= 631 and 304), in which 

biopsies were read centrally and consensually interpreted by a group of experts and used as a 

reference for untargeted biomarker screenings. The model was then externally validated in three 

independent datasets (n= 3744, 589 and 360). 

Results In the three validation datasets, the algorithm yielded a ROC curve AUC of mean (95% 

CI) 0.97 (0.92-1.00), 0.97 (0.96-0.97) and 0.95 (0.93-0.97) for antibody‐mediated rejection 

(ABMR); 0.94 (0.91-0.96), 0.94 (0.92-0.95) and 0.91 (0.88-0.95) for T cell-mediated rejection; 

>0.96 (0.90-1.00) in all three for interstitial fibrosis - tubular atrophy (IFTA). Finally, using the 

largest validation cohort, we developed an additional algorithm to discriminate active and 

chronic active ABMR with an accuracy of 0.95. 

Conclusion We built an Artificial Intelligence algorithm able to interpret histological lesions 

together with a few routine clinical data with very high sensitivity and specificity. This 

algorithm should be useful in routine or clinical trials to help pathologists and clinicians and 

increase biopsy interpretation homogeneity.  
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Introduction 

The international Banff classification standardizes the diagnosis of different forms of kidney 

allograft rejection.1 It is based on a grid of histological criteria with predefined thresholds, 

ranking the extent of elementary lesions. Subsequently, numerous rules must be applied on the 

possible combinations of histological lesions to deduce: antibody‐mediated rejection (ABMR); 

T cell-mediated rejection (TCMR); and others, including interstitial fibrosis and tubular atrophy 

(IFTA, that is no longer considered as a category in itself).1 However, this gold-standard 

strategy is not perfect and the transcription of elementary lesions into a final clinical 

interpretation may appear challenging. First, the interobserver reproducibility of reporting and 

ranking histological lesions is suboptimal.2–4 In a recent international survey, 6 case-based 

scenarios in which the elementary Banff lesions and clinical background were provided (i.e. the 

slide reading step was skipped), were interpreted by 95 clinicians and 72 renal pathologists. 

Case interpretations differed by 26 and 34% from the reference standards, respectively.5 The 

absence of DSA or negative C4d staining, or serum creatinine, proteinuria and other clinical 

data may influence the pathologist’s or clinician’s judgement of a case. Secondly, the definition 

of the phenotypes has dynamically evolved since 2005 with each revision of the Banff 

classification, leading to changes in the evaluation criteria applied and in the diagnostic entities, 

including their designation by name.1 In small transplant centers where pathologists have a 

general practice, it is challenging to integrate these frequent updates with the same level of 

expertise as pathologists specialized in the analysis of kidney allograft biopsies. Thirdly, 

centralized assessment and consenting on biopsy diagnoses by specialized pathologists is not 

always possible in clinical studies in kidney transplantation (e.g., on biomarkers,6 treatment 

strategies, survival analyses in prospective or retrospective cohorts) due to logistic and financial 

constraints. 
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Three strategies may be used for the assessment of humoral rejection, t-cell rejection, or other 

biopsy lesions. The first is to apply the Banff rules strictly and automatically with “if then else” 

rules. The second is to identify clusters of elementary lesions in an unsupervised manner that 

cannot be directly compared with the Banff reference classes. Their pertinence is generally 

evaluated based on further patient outcome, and logically clusters of cases with lesions have 

poorer survival than those with normal biopsies.7 The third strategy, as yet unexplored, is to 

identify case clusters in a supervised manner based on reference diagnoses made considering 

both the Banff classification and the clinical context, so as to automate and homogenize the 

process of clinical interpretation of biopsy cases used for clinical decision making. 

Machine Learning (ML) is defined as a subset of the artificial intelligence (AI) domain, capable 

of automatically learning and continuously adapting interpretation or prediction algorithms. 

Robust mathematical procedures are applied by computer systems to achieve these complex 

tasks. With sufficient data, it can handle noisy and correlated variables, sometimes without the 

need for parametric assumptions, contrary to most traditional statistics. As recognized at the 

last Banff Meeting,1 the combination of quality and quantity of input data is key for achieving 

result quality using ML. Whatever the ML method, it is therefore necessary to train the model 

on a large enough database of pathological cases, examined by a panel of experienced 

pathologists. 

The aim of the present study was to build a robust and accurate ML algorithm based on two 

large databases of biopsy cases interpreted by an expert group of pathologists and transplant 

physicians as part of two large European research programs. This algorithm was built  

 to identify and hierarchize the Banff criteria and clinical data actually used by pathologists and 

clinicians to diagnose graft rejection, and repeat this process in a perfectly reproducible manner 

so as assign the exact clinical diagnoses to each biopsy in three large external datasets from 

various European countries.  
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Methods 

Patients and biopsies 

Histological data from kidney graft biopsies came from different independent datasets, in the 

form of the elementary Banff scores and reference diagnoses, as interpreted by pathologists and 

transplant physicians. For the training set, we used biopsy data from two European programs, 

BIOMArkers of Renal Graft INjuries (BIOMARGIN, ClinicalTrials.gov, number 

NCT02832661) and Reclassification using OmiCs integration in KidnEy Transplantation 

(ROCKET, funded by ERACoSysMed 2018-2021), both aiming at discovering and validating 

robust non-invasive biomarkers.8 The first two steps of BIOMARGIN were case-control studies 

enabling the untargeted search and then the selection of a broad list of biomarkers. The third, 

cross-sectional step aimed to validate the diagnostic performance of the biomarker candidates 

on a representative sample of transplant patients in Europe. Between June 2011 and August 

2016, more than 650 sample triplets (urine, blood and biopsy) were collected in highly 

standardized conditions and stored in the Biobanks of the four hospitals participating in the 

project (Hôpital Necker Paris, France; University Hospitals Leuven, Belgium; Medizinische 

Hochschule Hannover, Germany; and Centre Hospitalier Universitaire Limoges, France). All 

these biopsies were read and interpreted locally and then sent for central reading by an 

independent expert pathologist, with adjudication of discrepancies by consensus between three 

independent expert pathologists. The final clinical diagnosis was made by four transplant 

physicians based on the consent histological interpretation and the clinical context. 

Biopsy and omics data are still being gathered in our consortium as part of the ROCKET 

program, to discover accurate biomarkers of rarer phenotypes or graft lesions, including: active 

ABMR, chronic active ABMR, acute TCMR, chronic active TCMR, polyomavirus 
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nephropathy (PVN) and glomerulonephritis. Ambiguous cases or those with confounding 

conditions and lesions are excluded. The corresponding dataset was used in the present study 

to train a more complex model able to distinguish active from chronic active ABMR. We could 

not study chronic inactive ABMR because the history of the cases was not available. 

For the external validation of the ML algorithm and the choice of thresholds, we first used 

biopsy data from patients transplanted between 2004 and 2013 and followed-up until September 

2019 at KU Leuven, Belgium. The second validation dataset was from patients followed-up 

from 2013 to 2019 at the Medizinische Hochschule Hannover, Germany and the third from a 

single-center study at Hôpital Necker, Paris, France,9 approved by the ethics committee of Ile-

de-France XI (13016), where clinically-indicated renal allograft biopsies were collected from 

February 2011 to February 2013. All the patients of the external validation cohorts were 

different from those included in the above-mentioned BIOMARGIN and ROCKET studies. 

For each biopsy, expert renal pathologists evaluated the elementary Banff criteria as 

recommended in the 2013 revised Banff Classification:10,11 glomerulitis (g), peritubular 

capillaritis (ptc), linear C4d staining in ptc or medullary vasa recta (C4d), chronic transplant 

glomerulopathy (cg), endarteritis (intimal arteritis, v), inflammation in non‐scarred cortex (i), 

tubulitis in cortical tubules within non‐scarred cortex (t), total cortical inflammation (ti), tubular 

atrophy in cortex (ct), interstitial fibrosis in cortex (ci), arteriolar hyalinosis (ah), arterial intimal 

fibrosis (fibrointimal thickening, cv). The diagnoses of interest were: active ABMR (yes/ no), 

TCMR (yes/no, borderline cases included as yes), IFTA lesions (grade ≥ II). These diagnoses 

were considered as the reference (gold standard) for training our ML algorithms. The clinical 

databases included the laboratory test results about donor-specific antibodies (DSA), serum 

creatinine (µmol/L) and proteinuria (g/L) at the time of the biopsy. No algorithm was built for 

glomerulonephritis or PVN as there were too few cases in the ROCKET training dataset and in 

the external validation datasets. Moreover, PVN is easily diagnosed by means of the specific 
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SV40 staining, which is generally used in cases with positive BK virus serology. However, a 

computer program overlay was applied to biopsies with positive BK viremia together with 

positive t and i criteria, so as to avoid false positive TCMR diagnoses due to PVN. 

Statistical analyses 

The predictors were: the Banff criteria semi-quantitatively scored from 0 to 3 (g, ptc, C4d, cg, 

v, i, t, ti, ct, ci, ah, cv); DSA positivity; serum creatinine, proteinuria, and time elapsed between 

transplantation and biopsy. Using the training dataset, a ML algorithm was built for each 

different outcome: active ABMR (yes/no), TCMR (yes/no), IFTA (yes/no) and ABMR 

(active/chronic active). In the training dataset, biopsies with more than 2 missing data among 

the elementary Banff lesions were removed. This exclusion was not applied in the validation 

datasets, so as to evaluate the algorithms in real-life situations. After analyzing the distribution 

of the Banff elementary lesion scores, we chose to impute the respective median value to the 

missing scores, in the training dataset. No imputation was made in the different validation 

datasets. The ML method of Extreme Gradient Boosting, an ensemble method based on 

decision trees, was chosen for its good performance on structured tabular data and its ability to 

handle missing data for making predictions.12,13 Prior to training the algorithms, we optimized 

the hyperparameters using ten-fold cross validation, for best accuracy. With this optimal set of 

hyperparameters (Supplemental Table 2), we assessed the algorithm performance in the training 

phase using the same ten-fold cross validation procedure. Receiver operating characteristic 

(ROC) curves, representing the true positive rate (sensitivity) vs. the false positive rate (1 - 

specificity), were used to assess the threshold-independent classification performance of each 

model. As the training dataset was imbalanced (skewed towards normal biopsies), we also used 

precision-recall (PR) curves14,15 representing precision (positive predictive value) vs. recall 

(sensitivity), not considering true negatives. The minimum PR area under the curve (AUC) is 

equal to the prevalence of the disease. When thresholds were set to a certain value, agreement 
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between ML classification results and the expert conclusion was assessed by calculation of the 

accuracy. Accuracy is the probability that an observation is correctly classified (number of true 

positives plus number of true negatives, divided by the total number of individuals). In this 

study, the primary end points were the diagnostic accuracy and the ROC AUC of the different 

ML algorithms. 

The Leuven cohort was used to set thresholds based on the accuracy, positive predictive and 

negative predictive values in this cohort.16 For external validation of the ML algorithms, these 

thresholds were then applied in the Hannover and Paris Necker cohorts. 

For statistical computing and graphics, we used the free software environment R (version 4.0.3) 

and in particular, the xgboost package for classification (version 1.2.0.1). 

 

Results 

In the BIOMARGIN training dataset (n = 643), 12 biopsies were excluded because they missed 

three or more Banff elementary lesion scores. Among the remaining 631 cases, 73 biopsies 

missed one Banff elementary lesion score and 29 missed two. Patient characteristics at the time 

of allograft biopsy are presented in Table 1 and other characteristics of the training dataset are 

detailed in Supplemental Table 1. Among the 304 biopsies of the ROCKET dataset, none had 

missing data (as it was a study exclusion criterion), 63 cases had active ABMR and 44 chronic 

active ABMR. 

Detailed results of cross-validation in the training set are shown in the Supplemental Material. 

The ROC curves showed excellent performance with AUC of 0.99 (95% CI: 0.99-1.00), 0.98 

(95% CI: 0.96-0.99) and 1.00 (CI 95%: 0.99-1.00) for ABMR, TCMR and IFTA classification, 

respectively. The calculated accuracy was 0.97, 0.95, 0.99 and 0.94 for ABMR, TCMR, IFTA 
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and ABMR active/chronic active, respectively (arbitrary threshold set at 0.50). For the four 

models, the contribution (so-called “importance”) of the histological and clinical features is 

shown in Supplemental Figure 1. 

Figure 2 shows the ROC and PR curves obtained in the three validation datasets. The ABMR 

algorithm yielded ROC curve AUC of 0.97 (95% CI: 0.92-1.00), 0.97 (95% CI: 0.96-0.97) and 

0.95 (95% CI: 0.93-0.97), and PR curve AUC of 0.92, 0.72 and 0.84 for the Hannover, Leuven, 

and Necker datasets, respectively. In comparison, the minimum PR curve AUC for a No-Skill 

Classifier was 0.06, 0.07 and 0.24, respectively. For the TCMR model, the ROC AUCs were 

0.94 (95% CI: 0.91-0.96), 0.94 (95% CI: 0.92-0.95) and 0.91 (95% CI: 0.86-0.95), the PR AUCs 

(minimum AUC for a No-Skill Classifier) were 0.91 (0.33), 0.83 (0.18) and 0.55 (0.13), 

respectively. For the IFTA model, the performance was even better with a minimum AUC of 

0.95 (95% CI: 0.90-1.00) for the ROC and PR curves, in all local datasets. 

Thresholds were chosen to maximize accuracy in the Leuven cohort (Figure 2). We opted for a 

“grey zone” with two numerical cutoffs constituting its borders. The first cutoff was used to 

exclude each type of diagnosis with near certainty (to privilege sensitivity and negative 

predictive value), and the second to assert the diagnosis with similar near certainty (to privilege 

specificity and positive predictive value). The lower and upper thresholds were chosen at 0.10 

and 0.75, respectively, for the binary models of ABMR and TCMR. Between these two 

thresholds, the ABMR grey zone includes 11.8, 0.6, and 2.1% of biopsies in the Leuven, 

Hannover, and Necker datasets, respectively. The TCMR grey zone includes 18.5, 1.1, and 

0.9% of biopsies, respectively.  For IFTA, the scores were already very well discriminated so 

we chose a unique threshold of 0.10. The features and performance of the final models are 

presented in Table 2. 

Table 3 presents the performance of the active/chronic active ABMR estimator in the Leuven 

cohort. The accuracy was 0.98 for biopsies above the upper cutoff of 0.75, as well as for biopsies 
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above the lower cutoff of 0.10 (i.e., including the grey zone). The final accuracy of the 

combination of the two ABMR estimators (yes/no and active/chronic active) successively 

applied to the Leuven dataset was 0.95. 

Finally, we applied our algorithms to the 6 case-based scenarios used by Schinstock et al.5 for 

their international survey among clinicians and renal pathologists (to understand how the Banff 

ABMR classification is interpreted in practice). Model predictions were perfectly consistent 

with the reference diagnoses (100% agreement), without any doubt regarding the score values. 

Detailed input data and score results are presented in Supplemental Table 3. 

Some specific cases were also studied in detail. Mixed ABMR/TCMR cases were predicted for 

68%, 22% and 10% of them as ABMR, grey zone, and not ABMR, respectively. They were 

also independently classified for 85%, 7% and 8% of them as TCMR, grey zone and not TCMR 

respectively. Among the ABMR cases, 34%, 54% and 12% of those with negative DSA were 

classified as ABMR, the grey zone and not ABMR, respectively. Borderline TCMR1 cases were 

all predicted as TCMR. 

 

Discussion 

Based on a training set made up of two large databases of kidney graft biopsy histological Banff 

scores and their combined pathological and clinical interpretation obtained in state-of-the art 

conditions, we developed AI algorithms able to automatically derive the main rejection 

diagnoses from the elementary Banff scores and a few clinical data. These algorithms showed 

excellent concordance with the clinical diagnoses made locally by specialized pathologists and 

transplant physicians in independent patient cohorts from three European transplant centers. 

Despite the fact that some scored biopsies had missing data in these different validation datasets 

(as is the case in usual practice), the performance of the estimators was still very good when up 
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to 2 (and even sometimes 3 or 4) data per biopsy were missing. However, these missing values 

could not be accounted for in the experts’ annotation, which means that the reference diagnoses 

are uncertain and that the ML algorithms leading to the same conclusions do not provide proof 

of their actual performance. 

Surprisingly, the predictors of each diagnosis retained by the algorithms after unsupervised 

selection were not all consistent with those proposed by the Banff classification. The IFTA 

grade can easily be assessed using only two criteria of the Banff classification, so it is not 

surprising that our model almost never failed. At least, this algorithm shows that no other 

criterion or clinical data influenced the expert decision for this phenotype. However, contrary 

to the Banff classification, the ct criterion was more important than ci (feature importance 

indicates how useful or valuable each feature is to a model). It is also worth noting that this was 

the only perfectly reproducible phenotype across hospitals and pathologists in our study. The 

reason why we could not predict the other phenotypes with ROC AUC = 1 despite the use of 

gradient boosting, an ensemble method literally based on decision trees, is probably due to the 

fact that the interpretation of the Banff classification for these phenotypes was not as 

reproducible among pathologists as that of IFTA. 

In the TCMR model, i was much less used than t, whereas in the Banff classification they are 

of equal importance. Also, an increased v alone (≥ 1) triggers the diagnosis of TCMR in the 

Banff classification, whereas v was not part of the 8 most important variables in our model. 

Borderline TCMR was considered as TCMR in the learning and validation phases of the present 

study. Indeed, the aim was to propose a sensitive tool to detect rejection, considering the cost 

of false negative cases higher than that of false positives. Despite probably larger variability 

across centers for reporting borderline TCMR, consistency with the algorithm estimation was 

very high.  
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In the ABMR model (yes/no), cg was reported as the third most important variable, whereas 

the Banff classification uses this criterion only for the distinction between active and chronic 

active ABMR. Moreover, the v criterion was underused by the model (it is not one of the 8 most 

important variables) whereas it has the same importance as glomerulitis and peritubular 

capillaritis in the Banff classification. In addition, time after transplantation, serum creatinine 

and proteinuria had a higher rank than this v criterion among the 8 most important variables. 

The ABMR algorithm did not detect 12% of the ABMR cases without DSA. It is noteworthy 

that such cases are not consensually accepted as equivalent to those with positive DSA, since 

graft survival is not the same.22 

The lower and upper thresholds were chosen at 0.10 and 0.75 for the binary models of ABMR 

and TCMR, respectively. Indeed, in the Leuven dataset used to set up these thresholds we 

observed that true negatives were uniformly distributed very close to the score of 0, whereas 

the scores of true positive cases were rather spread out between 0.75 and 1. Furthermore, we 

did not want to select a single best threshold value and overfit the Leuven dataset. 

Grading elementary lesions is not always possible, because not all biopsies are deemed 

adequate. The number of glomeruli and arteries visible on the slides can be very small, making 

it impossible to assess all criteria. More generally, in the case of missing criteria, the algorithm 

performance might be reduced. For each classification algorithm, the measured importance of 

the variables involved (presented in supplemental data) points to the critical determinants. For 

instance, diagnosing ABMR requires at least the presence of the following data: g, ptc, cg. 

Therefore, for routine practice, an overlay of “if then else” rules should be applied upstream of 

the current algorithm to avoid making predictions in case one of these critical variables is 

missing. In contrast, the absence of one or a few minor predictors of ABMR, i.e. DSA, time 

after transplant, C4d staining, serum creatinine, and proteinuria, seems to be compatible with 

accurate prediction. 
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Interobserver reproducibility of kidney graft rejection diagnoses has been assessed many times 

in the past, sometimes limited to the detection and grading of the elementary lesions (the 

diagnoses being derived centrally using the Banff rules) while at other times encompassing the 

final diagnoses. For example, Marcussen et al.2 reported fair agreement for t, i and v, that were 

the only criteria used for grading the rejection at this period.17 The interobserver kappa score 

for grading the rejection severity was only 0.40 overall (fair agreement) while it was 0.56 when 

only the presence or absence of acute rejection was considered (moderate agreement). 

Furthermore, agreement was poor for the ah and g criteria, the latter being essential for the 

diagnosis of ABMR. The reproducibility of the elementary criteria (while the final phenotypes 

were assigned centrally) was also studied by Smith et al.18 The kappa score between 

pathologists on a diagnosis of ABMR (either active or chronic active) versus no rejection was 

better: mean (range) 0.70 (0.53-0.91). In this study, a “majority rules” approach was 

successfully used to reduce variability and increase kappa (from 0.70 to 0.82), similar to what 

had been done for the BIOMARGIN learning dataset used in the present study. In the study by 

Furness et al,3 the reference diagnosis of acute rejection was made based on the increase of 

serum creatinine in the week preceding the biopsy (or loss of the graft) with no other changes 

to explain such a change in creatinine. However, the criteria assessment was done blindly, 

meaning without taking into consideration any clinical feature. Once again, the interpretation 

of the elementary criteria was done automatically: only 74% and 47% of acute rejection 

episodes were detected, depending on whether the Banff “suspicious” grade was included or 

not. Gough19 and Veronese20 found moderate to good interobserver agreement in assigning a 

diagnosis of acute rejection. However, they did not mention whether the scores were interpreted 

in a centralized manner or by each pathologist individually. The inter-observer agreement about 

the conclusion drawn from the semi-quantitative criteria and the clinical context (as is done in 

routine practice) was not evaluated in any of these studies. Unfortunately, the vulnerability of 
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the Banff classification to misinterpretations has already been demonstrated, especially for 

antibody-mediated rejection.5 Confirmation of the reliability of our algorithms was shown by 

their application to the 6 case-based scenarios used by Schinstock et al.5 for a large survey 

among clinicians and renal pathologists and their full agreement with the reference standards, 

as opposed to 26.1% and 35.5% differences for the pathologists and clinicians, respectively. 

In retrospect, this study also points out the imperfect reproducibility of case classification within 

and across large European kidney transplantation centers. It also highlights how artificial 

intelligence can support the interpretation of the Banff elementary lesions, in order to help 

pathologists in their routine practice, as well as to minimize outcome uncertainty in multicenter 

clinical trials in kidney transplantation. 

The main limitation of this approach is that it starts with human histological reading and 

elementary lesion grading of biopsies, i.e. on human skills and variability. However, the many 

AI tools being developed for digital image analysis may soon fill the gap23–25 and represent an 

alternative to time-consuming and non-reproducible visual scoring. For example, Hermsen et 

al. demonstrated the applicability of convolutional neural networks to automated histologic 

analysis of biopsy slides.26 

Finally, artificial intelligence may help to standardize and facilitate the interpretation of 

complex clinical situations, such as those grouped under the terms “kidney graft rejection”. The 

algorithms described here can be adjusted to any future changes in the Banff criteria and 

diagnostic entities (such as chronic active TCMR as soon as an agreement has been reached). 

Biopsies of the learning data set will be re-examined by pathologist experts and new algorithms 

trained. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.17.21263552doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.17.21263552
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author contributions 

M.L. and P.M. designed the study; J.-H. B., M.R. and P.K. carried out the examination of the 

biopsies; M.N., W.G and D.A assigned the reference diagnoses; M.L., P.M. and J.B.W. 

analyzed the data; M.L. and P.M. wrote the manuscript; M.N., W.G and D.A revised the 

manuscript. All authors approved the final version of the manuscript. 

Acknowledgments 

This project was supported by ERACoSysMed-2, the ERA-Net for Systems Medicine in 

clinical research and medical practice (project ROCKET, JTC2 29). 

Disclosures 
M. Naesens reports being a scientific advisor to or Editorial Board member of several journals 

and Advisor for the European Medicines Agency. All remaining authors have nothing to 

disclose. 

Supplemental material Table of Contents 

Definitions of the phenotypes in the different external validation cohorts 

- University Hospitals Leuven, Belgium 

- Medizinische Hochschule Hannover, Germany 

- University Hospital Necker Paris, France 

Supplemental Table 1: Diagnostic characteristics. 

Supplemental Table 2: XGBoost hyperparameters. 

Supplemental Table 3: Machine-learning analysis of the 6 case-based scenarios used by 

Schinstock et al. for their survey among clinicians and renal pathologists. 

Supplemental Figure 1: importance of the histological and clinical features for ML prediction. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.17.21263552doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.17.21263552
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 2: ROC curve analysis in the training dataset. 

References 

1.  Loupy A, Haas M, Roufosse C, Naesens M, Adam B, Afrouzian M, et al.: The Banff 

2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell– and 

antibody-mediated rejection. Am. J. Transplant. 20: 2318–2331, 2020 

2.  Marcussen N, Olsen TS, Benediktsson H, Racusen L, Solez K: Reproducibility of the 

Banff classification of renal allograft pathology. Inter- and intraobserver variation. 

Transplantation 60: 1083–1089, 1995 

3.  Furness PN, Taub N, Convergence of European Renal Transplant Pathology Assessment 

Procedures (CERTPAP) Project: International variation in the interpretation of renal 

transplant biopsies: report of the CERTPAP Project. Kidney Int. 60: 1998–2012, 2001 

4.  Furness PN, Taub N, Assmann KJM, Banfi G, Cosyns J-P, Dorman AM, et al.: 

International variation in histologic grading is large, and persistent feedback does not 

improve reproducibility. Am. J. Surg. Pathol. 27: 805–810, 2003 

5.  Schinstock CA, Sapir-Pichhadze R, Naesens M, Batal I, Bagnasco S, Bow L, et al.: 

Banff Survey on Antibody Mediated Rejection Clinical Practices in Kidney 

Transplantation: Diagnostic Misinterpretation has Potential Therapeutic Implications. 

Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 19: 123–131, 

2019 

6.  Van Loon E, Gazut S, Yazdani S, Lerut E, de Loor H, Coemans M, et al.: Development 

and validation of a peripheral blood mRNA assay for the assessment of antibody-

mediated kidney allograft rejection: A multicentre, prospective study. EBioMedicine 46: 

463–472, 2019 

7.  Vaulet T, Divard G, Thaunat O, Lerut E, Senev A, Aubert O, et al.: Data-driven 

Derivation and Validation of Novel Phenotypes for Acute Kidney Transplant Rejection 

using Semi-supervised Clustering. J. Am. Soc. Nephrol. JASN 32: 1084–1096, 2021 

8.  Marx D, Metzger J, Olagne J, Belczacka I, Faguer S, Colombat M, et al.: Proteomics in 

Kidney Allograft Transplantation-Application of Molecular Pathway Analysis for 

Kidney Allograft Disease Phenotypic Biomarker Selection. Proteomics Clin. Appl. 13: 

e1800091, 2019 

9.  Rabant M, Amrouche L, Lebreton X, Aulagnon F, Benon A, Sauvaget V, et al.: Urinary 

C-X-C Motif Chemokine 10 Independently Improves the Noninvasive Diagnosis of 

Antibody-Mediated Kidney Allograft Rejection. J. Am. Soc. Nephrol. JASN 26: 2840–

2851, 2015 

10.  Haas M, Sis B, Racusen LC, Solez K, Glotz D, Colvin RB, et al.: Banff 2013 meeting 

report: inclusion of c4d-negative antibody-mediated rejection and antibody-associated 

arterial lesions. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 

14: 272–283, 2014 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.17.21263552doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.17.21263552
http://creativecommons.org/licenses/by-nc-nd/4.0/


11.  Haas M: The Revised (2013) Banff Classification for Antibody-Mediated Rejection of 

Renal Allografts: Update, Difficulties, and Future Considerations. Am. J. Transplant. 

Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 16: 1352–1357, 2016 

12.  Chen T, Guestrin C: XGBoost: A Scalable Tree Boosting System. ArXiv160302754 Cs 

[Internet] 2016 Available from: http://arxiv.org/abs/1603.02754 [cited 2021 Apr 19] 

13.  XGBoost [Internet]. Available from: https://kaggle.com/dansbecker/xgboost [cited 2021 

Apr 21] 

14.  Davis J, Goadrich M: The relationship between Precision-Recall and ROC curves 

[Internet]. In: Proceedings of the 23rd international conference on Machine learning, pp 

233–240, 2006 Available from: https://doi.org/10.1145/1143844.1143874 [cited 2020 

Dec 31] 

15.  Saito T, Rehmsmeier M: The precision-recall plot is more informative than the ROC plot 

when evaluating binary classifiers on imbalanced datasets. PloS One 10: e0118432, 2015 

16.  Cannesson M: The “grey zone” or how to avoid the binary constraint of decision-

making. Can. J. Anaesth. J. Can. Anesth. 62: 1139–1142, 2015 

17.  Racusen LC, Solez K, Colvin RB, Bonsib SM, Castro MC, Cavallo T, et al.: The Banff 

97 working classification of renal allograft pathology. Kidney Int. 55: 713–723, 1999 

18.  Smith B, Cornell LD, Smith M, Cortese C, Geiger X, Alexander MP, et al.: A method to 

reduce variability in scoring anti-body mediated rejection in renal allografts: 

Implications for clinical trials. Transpl. Int. Off. J. Eur. Soc. Organ Transplant. 32: 173–

183, 2019 

19.  Gough J, Rush D, Jeffery J, Nickerson P, McKenna R, Solez K, et al.: Reproducibility of 

the Banff schema in reporting protocol biopsies of stable renal allografts. Nephrol. Dial. 

Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. - Eur. Ren. Assoc. 17: 1081–1084, 

2002 

20.  Veronese FV, Manfro RC, Roman FR, Edelweiss MI, Rush DN, Dancea S, et al.: 

Reproducibility of the Banff classification in subclinical kidney transplant rejection. 

Clin. Transplant. 19: 518–521, 2005 

21.  Wohlfahrtova M, Hruba P, Klema J, Novotny M, Krejcik Z, Stranecky V, et al.: Early 

isolated V-lesion may not truly represent rejection of the kidney allograft. Clin. Sci. 

Lond. Engl. 1979 132: 2269–2284, 2018 

22.  Senev A, Coemans M, Lerut E, Van Sandt V, Daniëls L, Kuypers D, et al.: Histological 

picture of antibody-mediated rejection without donor-specific anti-HLA antibodies: 

Clinical presentation and implications for outcome. Am. J. Transplant. Off. J. Am. Soc. 

Transplant. Am. Soc. Transpl. Surg. 19: 763–780, 2019 

23.  Gadermayr M, Dombrowski A-K, Klinkhammer BM, Boor P, Merhof D: CNN cascades 

for segmenting sparse objects in gigapixel whole slide images. Comput. Med. Imaging 

Graph. Off. J. Comput. Med. Imaging Soc. 71: 40–48, 2019 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.17.21263552doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.17.21263552
http://creativecommons.org/licenses/by-nc-nd/4.0/


24.  Pedraza A, Gallego J, Lopez S, Gonzalez L, Laurinavicius A, Bueno G: Glomerulus 

Classification with Convolutional Neural Networks.  

25.  Bukowy JD, Dayton A, Cloutier D, Manis AD, Staruschenko A, Lombard JH, et al.: 

Region-Based Convolutional Neural Nets for Localization of Glomeruli in Trichrome-

Stained Whole Kidney Sections. J. Am. Soc. Nephrol. JASN 29: 2081–2088, 2018 

26.  Hermsen M, de Bel T, den Boer M, Steenbergen EJ, Kers J, Florquin S, et al.: Deep 

Learning-Based Histopathologic Assessment of Kidney Tissue. J. Am. Soc. Nephrol. 

JASN 30: 1968–1979, 2019 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.17.21263552doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.17.21263552
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables 

Table 1 – Patient characteristics, laboratory test results at the time of allograft biopsy 

and histological diagnoses. 

Variables 

BIOMARGIN 

(training) 

(n=631) 

ROCKET 

(training) 

(n=304) 

KU Leuven 

(validation) 

(n=3744) 

MH Hannover 

(validation) 

(n=589) 

Necker Paris 

(validation) 

(n=360) 

Time after transplant (mo), median (IQR) 12 (3-25) 12 (3-44) 12 (3-25) 4 (2-12) 12 (2-47) 

Indicated biopsy, n (%)  222 (35.2) 134 (44.1) 979 (26.1)  MD  MD 

Pathologic diagnosis 

ABMR, n (%) 104 (16.5) 107 (35.2) 242 (6.7) 36 (6.1) 86 (23.9) 

TCMR, n (%) 82 (13.0) 84 (27.6) 665 (17.8) 193 (33.3) 47 (13.1) 

Mixed ABMR/TCMR, n (%) 28 (4.4) 19 (6.2) 79 (2.1) 15 (2.5) 13 (3.6) 

BKVN, n (%) 0 (0.0) 13 (4.3) 124 (3.3) 23 (4.1) 11 (3.1) 

IFTA, n (%) 210 (33.3) 98 (32.9) 780 (20.8) 44 (8.2) 188 (52.2) 

Normal, n (%) 312 (49.4) 93 (30.6) 2420 (65.9) 317 (57.3) 133 (36.9) 

Laboratory test results at the time of the biopsy  

Serum creatinine (µmol/L), median (IQR) 

150 (118-

198) 

154 (119-

208) 

141 (111-

199) 172 (131-234) 176 (142-234) 

DSA positivity, n (%) 124 (19.7) 87 (28.6) 299 (8.3) 11 (4.8) 142 (41.0) 

Proteinuria (g/L), median (IQR) 

0.10 (0.07-

0.24) 

0.10 (0.07-

0.34)  MD 

0.05 (0.04-

0.10) 

0.20 (0.08-

0.47) 

Abbreviations: ABMR, active antibody‐mediated rejection; BKVN, BK virus nephropathy; DSA, donor-

specific antibodies; IFTA, interstitial fibrosis/tubular atrophy grade II; IQR, interquartile range; MD, 

missing data; Normal, refers to cases with no graft alterations; TCMR, T cell-mediated rejection. 
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Table 2 – Thresholds chosen for, and performance of, the different algorithms 

  ABMR model TCMR model IFTA model 

  Threshold 

Low = 

0.10 

High = 

0.75 

Low = 

0.10 

High = 

0.75 

Unique = 

0.10 

Leuven 

dataset 

Sensitivity 91.7 54.1 91.7 84.8 100.0 

Specificity 97.8 97.9 76.8 97.9 100.0 

NPV 99.3 96.8 97.7 96.8 100.0 

PPV 35.0 64.9 46.1 89.7 100.0 

% cases between the 

two thresholds 
11.8 18.5 NA 

Hannover 

dataset 

Sensitivity 97.2 91.7 90.2 82.3 95.5 

Specificity 95.7 99.6 92.0 98.4 100.0 

NPV 99.8 99.5 94.1 90.4 99.6 

PPV 59.3 94.3 87.0 96.7 100.0 

% cases between the 

two thresholds 
0.6 1.1 NA 

Necker 

dataset 

Sensitivity 98.8 89.5 91.5 42.6 99.5 

Specificity 65.0 90.9 80.5 91.8 94.8 

NPV 99.4 96.5 98.4 91.8 99.4 

PPV 47.0 75.5 41.3 62.5 95.4 

% cases between the 

two thresholds 
2.1 1.9 NA 

Abbreviations: NA, not applicable; NPV, negative predictive value; PPV, positive predictive 

value. 
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Table 3 – Evaluation of the ML estimations of active/chronic active ABMR as compared 

with expert conclusions in the Leuven dataset (n = 232) 

ABMR predicted in the "grey" zone 
(0.10 ≤ score < 0.75) 

Experts conclusions 

Active ABMR 
N = 79 

Chronic active 
ABMR 
N = 13 

Model 
predictions 

Active ABMR N = 81 79 2 

Chronic active ABMR N = 11 0 11 

ABMR predicted positive 
(scores ≥ 0.75) 

Active ABMR 
N = 112 

Chronic active 
ABMR 
N = 19 

Model 
predictions 

Active ABMR N = 113 111 2 

Chronic active ABMR N = 18 1 17 
Abbreviations: ABMR, antibody‐mediated rejection. 
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Figures 

 

Figure 1: External validation of the Machine Learning estimators in three independent 

cohorts. 

(A) ROC curves of the ABMR model, the TCMR model and the IFTA model. (B) PR curves of 

the ABMR model, the TCMR model and the IFTA model. 

Abbreviations: ABMR, active antibody‐mediated rejection; IFTA, interstitial fibrosis/tubular 

atrophy grade II; Precision, positive predictive value; Recall, sensitivity; TCMR, T cell- 

mediated rejection. 
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Figure 2: Choice of thresholds in the Leuven dataset. The plots at the bottom show the 

density of the scores. 

(A) Sensitivity, specificity, and Youden Index, depending on the cut-off for each model. (B) 

Negative predictive value, positive predictive value, and accuracy, depending on the cut-off 

for each model. (C) Density of the scores for each model. 

Abbreviations: ABMR, active antibody‐mediated rejection; IFTA, interstitial fibrosis/tubular 

atrophy grade II; NPV, negative predictive value; PPV, positive predictive value; TCMR, T 

cell-mediated rejection; Youden Index, sensitivity + specificity - 1. 
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