Abstract
Importance The Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) dementia risk score is a recognized tool for dementia risk stratification. However, its application is limited due to the requirements for multidimensional information and fasting blood draw. Consequently, effective, convenient and noninvasive tool for screening individuals with high dementia risk in large population-based settings is urgently needed.
Objective To develop and validate a deep learning algorithm using retinal fundus photographs for estimating the CAIDE dementia risk score and identifying individuals with high dementia risk.
Design A deep learning algorithm trained via fundus photographs was developed, validated internally and externally with cross-sectional design.
Setting Population-based.
Participants A health check-up population with 271,864 adults were randomized into a development dataset (95%) and an internal validation dataset (5%). The external validation used data from the Beijing Research on Ageing and Vessel (BRAVE) with 1,512 individuals.
Exposures The estimated CAIDE dementia risk score generated from the algorithm.
Main Outcome and Measure The algorithm’s performance for identifying individuals with high dementia risk was evaluated by area under the receiver operating curve (AUC) with 95% confidence interval (CI).
Results The study involved 258,305 participants (mean aged 42.1 ± 13.4 years, men: 52.7%) in development, 13,559 (mean aged 41.2 ± 13.3 years, men: 52.5%) in internal validation, and 1,512 (mean aged 59.8 ± 7.3 years, men: 37.1%) in external validation. The adjusted coefficient of determination (R2) between the estimated and actual CAIDE dementia risk score was 0.822 in the internal and 0.300 in the external validations, respectively. The algorithm achieved an AUC of 0.931 (95%CI, 0.922–0.939) in the internal validation group and 0.782 (95%CI, 0.749–0.815) in the external group. Besides, the estimated CAIDE dementia risk score was significantly associated with both comprehensive cognitive function and specific cognitive domains.
Conclusions and Relevance The present study demonstrated that the deep learning algorithm trained via fundus photographs could well identify individuals with high dementia risk in a population-based setting. Our findings suggest that fundus photography may be utilized as a noninvasive and more expedient method for dementia risk stratification.
Question Can a deep learning algorithm based on fundus images estimate the CAIDE dementia risk score and identify individuals with high dementia risk?
Findings The algorithm developed by fundus photographs from 258,305 check-up participants could well identify individuals with high dementia risk, with area under the receiver operating characteristic curve of 0.931 in internal validation and 0.782 in external validation dataset, respectively. Besides, the estimated CAIDE dementia risk score generated from the algorithm exhibited significant association with cognitive function.
Meaning The deep learning algorithm based on fundus photographs has potential to screen individuals with high dementia risk in population-based settings.
Competing Interest Statement
Jianhao Xiong, Zongyuan Ge, Meng Fu, Bin Wang, Xin Zhao, Chao He, and Yuzhong Chen are employees of Beijing Eaglevision Technology Development Co., Ltd. All other authors declare no competing interests.
Funding Statement
The present study was supported by the National Natural Science Foundation of China (project no. 81974489) and 2019 Irma and Paul Milstein Program for Senior Health Research Project Award.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The use of the dataset for the algorithm training was approved by Tongren Hospital Institutional Review Board, Shibei Hospital Institutional Review Board, and iKang Healthcare Group Institutional Review Board with a waiver of informed consent. The external validation dataset (BRAVE) was approved by the Peking University School Institutional Review Board (ethical review approval number: IRB0001052-19060), all participants have given written informed consent.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The datasets can be obtained on request (xiewuxiang{at}hsc.pku.edu.cn; chenyuzhong{at}airdoc.com).