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Key Points 

Question: Can a deep learning algorithm based on fundus images estimate 

the CAIDE dementia risk score and identify individuals with high dementia 

risk? 

Findings: The algorithm developed by fundus photographs from 258,305 

check-up participants could well identify individuals with high dementia risk, 

with area under the receiver operating characteristic curve of 0.931 in internal 

validation and 0.782 in external validation dataset, respectively. Besides, the 

estimated CAIDE dementia risk score generated from the algorithm exhibited 

significant association with cognitive function. 

Meaning: The deep learning algorithm based on fundus photographs has 

potential to screen individuals with high dementia risk in population-based 

settings. 
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Abstract 

Importance: The Cardiovascular Risk Factors, Aging, and Incidence of 

Dementia (CAIDE) dementia risk score is a recognized tool for dementia risk 

stratification. However, its application is limited due to the requirements for 

multidimensional information and fasting blood draw. Consequently, effective, 

convenient and noninvasive tool for screening individuals with high dementia 

risk in large population-based settings is urgently needed. 

Objective: To develop and validate a deep learning algorithm using retinal 

fundus photographs for estimating the CAIDE dementia risk score and 

identifying individuals with high dementia risk. 

Design: A deep learning algorithm trained via fundus photographs was 

developed, validated internally and externally with cross-sectional design.  

Setting: Population-based. 

Participants: A health check-up population with 271,864 adults were 

randomized into a development dataset (95%) and an internal validation 

dataset (5%). The external validation used data from the Beijing Research on 

Ageing and Vessel (BRAVE) with 1,512 individuals.  

Exposures: The estimated CAIDE dementia risk score generated from the 

algorithm. 
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Main Outcome and Measure: The algorithm’s performance for identifying 

individuals with high dementia risk was evaluated by area under the receiver 

operating curve (AUC) with 95% confidence interval (CI).  

Results: The study involved 258,305 participants (mean aged 42.1 ± 13.4 

years, men: 52.7%) in development, 13,559 (mean aged 41.2 ± 13.3 years, 

men: 52.5%) in internal validation, and 1,512 (mean aged 59.8 ± 7.3 years, men: 

37.1%) in external validation. The adjusted coefficient of determination (R2) 

between the estimated and actual CAIDE dementia risk score was 0.822 in the 

internal and 0.300 in the external validations, respectively. The algorithm 

achieved an AUC of 0.931 (95%CI, 0.922–0.939) in the internal validation 

group and 0.782 (95%CI, 0.749–0.815) in the external group. Besides, the 

estimated CAIDE dementia risk score was significantly associated with both 

comprehensive cognitive function and specific cognitive domains. 

Conclusions and Relevance:   

The present study demonstrated that the deep learning algorithm trained via 

fundus photographs could well identify individuals with high dementia risk in a 

population-based setting. Our findings suggest that fundus photography may 

be utilized as a noninvasive and more expedient method for dementia risk 

stratification.  

 

Introduction 
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Worldwide, the number of people have dementia is projected to triply increase 

to 152 million by 2050, given the dramatic rise in ageing populations, yet there 

are no curative therapeutics available.1 Dementia has a long preclinical phase 

when no symptomatic cognitive impairments, but neurodegenerative 

progressions are occuring.2 Early identification of high-risk individuals is 

essential for preventing dementia, which efficiently targets participants who 

could benefit most from more intensive examinations and interventions.3 

The Cardiovascular Risk Factors, Aging, and Incidence of Dementia 

(CAIDE) dementia risk score was a recognized model to predict 20-year 

dementia risk, which based on multidimensional risk factors: age, sex, 

educational level, physical inactivity, systolic blood pressure (SBP), total 

cholesterol (TC), and body mass index (BMI). It was also highly predictive in 

external validation of a large multiethnic population,4-6 and adopted in Finnish 

Geriatric Intervention Study (FINGER) to select eligible at-risk participants. 

However, the CAIDE dementia risk score entails measurements by 

questionnaire inquiry, physical examinations and fasting blood draw, these 

procedures are time-consuming or invasive for participants, also increase the 

labor costs of healthcare practitioners and produce biohazardous waste. 

Consequently, effective, convenient and noninvasive tool to screen individuals 

with high dementia risk in large population-based settings is warranted. 

Vascular disease, especially microvasculature damage in the brain, is 

recognized as a major contributor to dementia.1,7 Anatomically and 
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developmentally, the retina shares homology with the brain.8 The retina is an 

exceptional site where the microcirculation can be handily and noninvasively 

visualized by fundus photography,9 thus providing insights into the brain 

microvasculature. Large population studies have demonstrated the 

correlations between various retinal microvascular abnormalities (such as 

retinopathy, arteriolar narrowing and venular dilation) and increased risk of 

dementia.10-12 Moreover, The emerging artificial intelligence technique, 

especially deep learning, has realized integrating multiple retinal features from 

fundus photographs, to provide estimation on vascular risk factors, and 

prediction on cardiovascular diseases.13-15 However, to our knowledge, this 

method has not been investigated on dementia. 

Herein, we hypothesized that the deep learning algorithm trained via 

fundus photographs might help to dementia risk stratification. Due to the 

insufficient time length to occur enough dementia events in our dataset, the 

present study aimed to train a deep learning algorithm for estimating the 

CAIDE dementia risk score thus identifying individuals with high dementia risk, 

and we proposed that the estimated score generated from the algorithm 

associated with the cognitive function. 

 

Methods 

Study design 
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This was a cross-sectional study. A deep learning algorithm based on fundus 

photographs for estimating the CAIDE dementia risk score was developed and 

internally validated by a medical check-up dataset. Additionally, by an 

independent cohort dataset, we externally validated the algorithm’s 

discrimination on individuals with high dementia risk, and further explored the 

association between the estimated CAIDE dementia risk score and cognitive 

function. 

Participants and datasets 

For the algorithm development, a dataset from 271,864 participants from 

Tongren Hospital in Beijing, Shibei Hospital in Shanghai, and iKang Healthcare 

Group who attending medical check-up in 19 province-level administrative 

regions of China during September 2018 to December 2019, were randomly 

divided into development (95%) and internal validation (5%) components. This 

dataset contained retinal fundus images and routine medical information, 

including age, sex, SBP, TC, and BMI. The use of the dataset for the algorithm 

training was approved by Tongren Hospital Institutional Review Board, Shibei 

Hospital Institutional Review Board, and iKang Healthcare Group Institutional 

Review Board with a waiver of informed consent. The algorithm’s performance 

was further externally validated using the baseline data from Beijing Research 

on Ageing and VEssel (BRAVE), a community-based cohort collecting fundus 

images and health information of middle-aged and older adults in Shijingshan 

District, Beijing in 2019.16 The BRAVE was approved by the Peking University 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.17.21262156doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.17.21262156


9 

 

School Institutional Review Board (ethical review approval number: 

IRB0001052–19060), all participants have given written informed consent. 

A variety of digital nonmydriatic fundus cameras were adopted to obtain 

fundus images, including Canon CR1/CR2 and Crystalvue FundusVue/ 

TonoVue in the check-up dataset, and Centervue DRS in the BRAVE. All 

images were captured using 45º fields of view. Both datasets calculated the 

CAIDE dementia risk score based on the function proposed by Kivipelto et al.4 

However, educational level and physical inactivity were not collected in the 

check-up dataset. Considering the importance of education on dementia, we 

imputed the risk score of educational level to the algorithm based on the Sixth 

National Census,17 according to the average risk score of educational level 

among the corresponding sex and age group of the individual. 

Development of the algorithm 

The development dataset consists of a training dataset and a tuning dataset. 

The training dataset was used to update model parameters during the training 

stage, and the tuning set was used for model selection. The label for training 

and testing of the network is given as yCAIDE Score which is the score summation 

of risk factors according to the CAIDE dementia risk model.4 

A convolutional neural network, Inception-Resnet-v2,18 was deployed as 

the backbone of the deep learning architecture. The input size of fundus image 

was 299×299. The return of the backbone is 8×8×1536 dimension vector. This 

vector was forwarded to 8×8 size average pooling layer and further been 
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flatten into a vector with a size of 1×1536. Subsequently, a dimension of 1×32 

fully connected layer was applied and connected to the output yCAIDE Score 

estimation. The loss function of score estimation was defined as MAE (mean 

absolute error). The gradient for model parameter updating from the loss 

function was calculated by Adam method with an initial learning rate at 0.001.19 

The model development and validation were performed with a batch size of 64. 

An image normalization which maps the image pixel values to a certain 

distribution was applied in the development and validation stages of the neural 

network.20 During the training of network, data augmentation of random 

cropping, random rotation (±30°) and random horizontal flipping were used to 

improve model robustness. The network is developed and tested on computer 

environment with Keras platform v2.2.221 and Python scikit-learn package 

0.22.2. 

Validation of the algorithm 

The estimated CAIDE dementia risk score of the participants deprived from 

mean estimated yCAIDE Score of both eyes, and the actual dementia risk score 

was calculated according to the CAIDE model. The goodness of fit of the 

algorithm was assessed by adjusted coefficient of determination (R2) in the 

internal validation dataset and the BRAVE. Besides, the algorithm’s 

discrimination on identifying individuals with high dementia risk was evaluated 

by area under the receiver operating curve (AUC) with 95% confidence interval 

(CI) by the pROC package version 1.16.2.22 Consistent with Sindi et al, 
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dementia risk score ≥10 points was recognized as high dementia risk.6 The 

maximum Youden index was applied to determine the optimal cut-off point.23 

Cognitive assessments 

We further explored the associations between the estimated CAIDE dementia 

risk score and cognitive function based on the BRAVE dataset. The primary 

cognitive measurement in the BRAVE was the Chinese version of Montreal 

Cognitive Assessment (MoCA) Basic, a sensitive and validated cognitive test 

battery to comprehensively assess nine cognitive domains.24,25 In addition, the 

BRAVE also supplemented three tests to further assess specific cognitive 

domains. Specifically, the memory function was measured by immediate and 

delayed recall of a list of ten unrelated words, and the total score ranged from 

0 to 20.26 The language and executive function was assessed by a verbal 

fluency test, which requiring participants to speak names of animals as many 

as possible within 1 minute, and the total number of animal names (excluding 

repetitive names) was count as the test score.27,28 The attention function and 

executive function were evaluated by the Chinese version of Trails Making 

Test (TMT),29 which asking individuals to draw a line through 25 numbers 

consecutively in ascending order, and as fast as they could. The TMT included 

two tasks, the TMT-A comprised numbers from 1 to 25, while the TMT-B was 

different in 25 numbers enclosed in squares from 1 to 12 and circles from 1 to 

13. The TMT-A evaluated processing speed and visual attention, and the 

TMT-B assessed executive function by measuring cognitive alternation ability. 
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In both tests of memory and verbal fluency, the higher score indicated better 

cognitive performance, while in the TMT, the longer time manifested worse 

performance.    

Statistical analysis 

The results were presented using percentage for categorical variables and 

means ± standard deviations (SD) or the median with interquartile range (IQR) 

for continuous variables. We ran multiple linear regression models to examine 

the associations between the estimated CAIDE dementia risk score and 

different cognitive assessments. The first model adjusted for age and sex, 

while the second model adjusted for multiple covariates, which contained age, 

sex, BMI (kg/m2), TC (mmol/L), educational level, marriage status, drinking 

status, smoking status, physical inactivity, depressive symptoms, APOE ε4 

status, and chronic diseases status. Specifically, high level of education was 

defined as educational year ≥10 years. Marriage status indicated currently 

married or not. Participants were divided into non-smokers (including 

ex-smokers) and current smokers. Alcohol consuming was defined as drinking 

at least once per week over the past one year. Subjects who took participant in 

moderate or vigorous physical activity at least twice a week with more than 20 

minutes each time, were recognized as active, and others were regarded as 

physical inactive. The BRAVE employed the ten-item version of the Center for 

Epidemiologic Studies Depression Scale (CES-D) to assess depressive 

symptoms, with a summed score ranged from 0 to 30. According to the prior 
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study, a score ≥12 was defined as having depressive symptoms in our study.30 

Individuals were divided into APOE ε4 carriers (indicated the presence of one 

or two ε4 alleles) and noncarriers. Hypertension was defined as systolic blood 

pressure of ≥140 mm Hg, or diastolic blood pressure of ≥90 mm Hg, or 

self-reported treatment with anti-hypertensive medication. Diabetes was 

defined as HbA1c ≥6.5% or fasting blood glucose ≥7.0 mmol/L, or self-reported 

current use of anti-diabetic therapy. Chronic disease measures also included 

self-reported physician-diagnosed coronary heart disease, cancer, stroke, and 

chronic obstructive pulmonary disease. Besides, we also employed analysis of 

covariance to compare cognitive performance between quartiles of the 

estimated dementia risk score, with the lowest quartile as the reference. Linear 

trend was also tested by including risk score quartiles as numerical variables. 

To test the robustness of the algorithm, we evaluated the performance of 

the algorithm using 9 points as the cut-off score of high dementia risk, in 

consistent with a previous study.31 We further tested the ability of the algorithm 

to identify participants eligible for multidomain intervention, since the FINGER 

trial adopted CAIDE score ≥6 points as one of the inclusion criteria to select 

eligible at-risk participants among the general population.32 In addition, we 

conducted subgroup analyses according to sex, age group (<60 years and ≥60 

years), respectively, based on the external validation dataset. For algorithm 

performance in identifying high risk individuals (with CAIDE score ≥10 points), 

we used Delong test to compare the AUC between subgroups. For the 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.17.21262156doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.17.21262156


14 

 

association with cognitive function, we respectively included the interaction 

terms of estimated dementia risk score with sex, as well as age group in 

multivariate linear regression models.  

All statistical analyses were performed by SAS 9.4 (SAS Institute, Cary, 

NC), and R language 4.0.0 (R Foundation, Vienna, Austria), with two-tailed 

alpha value of 0.05 as the statistically significant level. 

 

Results 

Study population 

The characteristics of individuals in the development dataset, internal 

validation dataset, and the BRAVE were summarized in Table 1.  

Among the 271,864 check-up participants, we randomly divided 95% 

(258,305 participants, mean aged 42.1 ± 13.4 years, men: 52.7%) into the 

development group and 5% (13,559 participants, mean aged 41.2 ± 13.3 years, 

men: 52.5%) into the internal validation group (eFigure 1a). These two groups 

shared similar baseline characteristics as shown in Table 1. Besides, the 

characteristics of participants in the training and tuning groups were displayed 

in eTable 1. Among 1,554 individuals taking participant in the baseline survey 

of BRAVE, 1,512 participants (mean aged 59.8 ± 7.3 years, men: 37.1%) had 

fundus photographs and complete information for calculating CAIDE dementia 

risk score and thus were included in the external validation group (eFigure 1b). 

Compared with check-up participants, individuals in the BRAVE were older, 
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had a higher proportion of female, with higher SBP and BMI. Respectively, 200 

(1.5%) individuals in the internal validation dataset and 159 (10.5%) in the 

BRAVE were in high dementia risk, with their CAIDE dementia risk score ≥10 

points. 

Algorithm performance 

The adjusted R2 between the estimated and actual CAIDE dementia risk score 

was 0.822 in the internal validation dataset and 0.300 in the BRAVE (Figure 1). 

As shown in Figure 2, the algorithm achieved an AUC of 0.931 (95%CI, 

0.922–0.939) in the internal validation dataset and 0.782 (95%CI, 0.749–0.815) 

in the BRAVE for identifying individuals with high dementia risk. The maximum 

Youden index on the two receiver operating characteristic curves were 0.780 

with the sensitivity of 0.985 and specificity of 0.795, corresponded to the 

optimal cut-off point of 5.843 in the internal validation dataset, and 0.453 with 

the sensitivity of 0.811 and specificity of 0.642, corresponded to the optimal 

cut-off point of 7.305 in the BRAVE, respectively.  

The estimated score and cognitive function 

Linear regression analyses found that the estimated CAIDE dementia risk 

score (as continuous variable) was significantly associated with the score of 

MoCA. As shown in Table 2, 1-point increment of estimated CAIDE dementia 

risk score was significantly associated with −0.324 (95%CI, −0.510 to −0.138) 

increment of the MoCA score after multivariable adjustment, which manifested 

worse comprehensive cognitive performance. Similarly, the higher estimated 
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CAIDE dementia risk score was significantly associated with lower score of 

memory and verbal fluency test, which indicated poorer performance of 

memory, language and executive function. The higher estimated score was 

also significantly associated with longer TMT-A and TMT-B time, which 

represented worse attention and executive function. The analysis of 

covariance found that after full adjustment, compared with the lowest quartile, 

the second, third, and highest quartiles were associated with worse 

comprehensive cognitive function, with lower MoCA score by −0.544 (95%CI, 

−1.062 to −0.046), −0.711 (95%CI, −1.281 to −0.141), and −0.984 (95%CI, 

−1.625 to −0.343), respectively (P for linear trend = 0.005, Table 3). Similar 

trends were also observed in performance of memory test, verbal fluency test, 

TMT-A and TMT-B, while the associations between quartiles of estimated 

CAIDE dementia risk score and verbal fluency test score were not significant. 

Sensitivity analysis 

As shown in eFigure 2, the algorithm still performed well in screening 

individuals with high dementia risk when the cut-off score changed to 9 points, 

with an AUC of 0.949 (95%CI, 0.944–0.953) in the internal validation dataset 

and 0.751 (95%CI, 0.722–0.780) in the BRAVE. Besides, as shown in eFigure 

3, the algorithm exhibited moderate performance in identifying participants 

eligible for multidomain intervention, with an AUC of 0.978 (95%CI, 

0.976–0.980) in the internal validation dataset and 0.738 (95%CI, 0.711–0.766) 

in the BRAVE. In addition, eFigure 4 summarized the algorithm performance in 
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subgroups of the BRAVE. The algorithm presented a higher AUC in female 

(0.812 vs 0.738, P = 0.045), as well as in participants <60 years (0.802 vs 

0.704, P = 0.019). As eFigure 5 presented, we found no interaction effect of 

sex or age group on the associations between estimated CAIDE dementia risk 

score and the score of MoCA, or other specific cognitive functions. 

 

Discussion 

To the best of our knowledge, the present study is the first investigation on 

developing a deep learning algorithm based on fundus photographs for 

identifying individuals with high dementia risk, with an AUC of 0.931 (95%CI, 

0.922–0.939) in the internal validation, and 0.782 (95%CI, 0.749–0.815) in the 

external validation dataset. Moreover, the estimated CAIDE dementia risk 

score exhibited significant associations with both comprehensive and specific 

domains of cognitive function, which further supported the reasonability of the 

algorithm. Taken together, our study clarified the feasibility of adopting deep 

learning algorithm based on fundus photographs to screen individuals with 

high dementia risk in population-based settings. 

The rationale of our work based on the concept that, the retina shares 

similar morphological features and physiological properties with the brain, and 

hence provide a unique site to detect changes in microvasculature related to 

the development of dementia.8 Previous studies have investigated the 

associations between a spectrum of retinal vascular abnormalities measured 
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via fundus photography and the risk of dementia.10-12,33 However, most studies 

measured retinal signs by semi-automated software, requiring human 

identification on the basis of prespecified protocols, which might introduce 

intra- and inter-variability. Besides, recent systematic reviews indicated that 

combination of multiple retinal vascular parameters, rather than individual 

marker, might provide higher prognostic value.34,35 The present study utilized 

artificial intelligence technique, which might exhibit notable advantages in 

these issues. Artificial intelligence operates in absence of human assessment, 

and even performs superiorly to ophthalmologists in capturing subtle retinal 

changes that would otherwise fail to attract human attention.36 With faster, 

easier, more consistent and precise output, the artificial intelligence reduces 

variability and human cost, thus enhancing the clinical utility of retinal 

photography.37,38 Moreover, artificial intelligence is able to fully extract and 

integrate multiple retinal features (including information beyond human existed 

perception or understanding) that are related to dementia risk.  

Participants in the BRAVE were much older, and had a larger proportion of 

female. The significant demographic heterogeneity between the development 

dataset and the external validation dataset suggested the algorithm’s 

robustness and promising wider utility. One application scenario for the 

algorithm is screening individuals with high dementia risk in community. 

Traditional dementia prediction models requiring cognitive tests or 

multidimensional risk factors increased application difficulties in 
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population-based settings. By contrast, fundus photography is easy to 

implement and timesaving. According to our practical experience in BRAVE, 

an investigator with no background on ophthalmology could take fundus 

photographs within one minute after a few hours of training. Besides, 

compared with risk factors like blood lipids or glucose, the retinal images have 

no requirement for fasting status, with less fluctuation and can be obtained 

noninvasively, thus facilitating the acceptability and convenience of 

participants. In addition, the algorithm could also be recommended as an 

add-on to routine screening for diabetic retinopathy, given that patients with 

diabetes were significantly associated with higher risk of cognitive decline and 

dementia.28 Moreover, our algorithm has potential utility in assessing pre-test 

dementia probability for further diagnostic tests in outpatient clinics. Last but 

not the least, this algorithm might also be adopted in dementia clinical trials, 

incorporated as inclusion criteria to efficiently target eligible participants, or 

surrogate outcome which could be observed expediently.32,39  

Previous studies have investigated deep learning algorithm based on 

fundus photographs for screening cardiovascular diseases and 

anaemia,13-15,40 our study added novel evidence regarding dementia in this 

field, potentially facilitating the eventual application of fundus photography for 

simultaneous screening of multiple diseases in large population-based settings. 

The foremost strength of the present work was employing convolutional neural 

network to deal with large dataset of fundus images. The development dataset 
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contained 579,880 fundus images of 258,305 individuals from 19 

province-level administrative regions of China, the convolutional neural 

network exhibited distinct advantages in processing such large dataset, by 

extracting information from images with a deep architecture, which was similar 

to image process in human brain.41 Another strength was incorporating 

external validation cohort with varied demographic characteristics and 

comprehensive cognitive tests, the results externally validated the 

performance and further supported the scientificalness of the algorithm.  

There were, however, also limitations in our study. First, the CAIDE 

dementia risk score was derived from cross-sectional data, future 

investigations based on incident dementia events in longitudinal settings are 

warranted to further verify the predictive performance of the algorithm. Second, 

the R2 in the external validation dataset was relatively small, probably due to 

the distinct age difference between the development and external validation 

dataset, given that age is the most important factor for dementia and cognitive 

function. Another possible explanation could be the absence of physical 

inactivity and educational level in the development dataset, which was 

conducted in medical check-up settings mainly collecting health 

measurements rather than lifestyle or socioeconomic factors. Despite that, we 

have imputed the educational level by national census data, and the algorithm 

performed well in identifying individuals with high dementia risk. Third, the 

present study only included Chinese participants, which might limit the 
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generalization of our algorithm to other ethnicities.  

 

Conclusions 

The present study demonstrated that a deep learning algorithm based on 

fundus photographs could well identify individuals with high dementia risk, and 

hold promise for wider application in community-based screening or clinic. 

Future studies based on longitudinal settings are warranted to further validate 

the predictive performance of the algorithm. 
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Figure legends: 

Figure 1. Estimation of CAIDE dementia risk score in the internal (a) and 

external (b) validation. 

External validation was conducted using data from the BRAVE. The adjusted 

R2 (coefficient of determination) between the estimated CAIDE dementia risk 

score and actual CAIDE dementia risk score is presented. 

Abbreviation: BRAVE = Beijing Research on Ageing and Vessel. 

 

Figure 2. Algorithm performance for identifying participants with high dementia 

risk in the internal validation dataset (a) and in the BRAVE (b).  

Individuals with high dementia risk were defined as CAIDE dementia risk score 

≥10 points. The points on line indicate the maximum Youden index.  

Abbreviation: AUC = area under the receiver operating characteristic curve. 
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Table 1. Characteristics of individuals in development, internal validation, and external validation datasets 

Characteristics 
Development dataset   Internal validation dataset   External validation dataset 

 Men Women   Men Women   Men Women 
 No. of images 306,795 273,085 

 
16,124 14,246 

 
1,122 1,902 

 No. of participants 136,157 122,148  7,120 6,439  561 951 

 Age (years) 42.3±13.6 41.8±13.8  42.2±13.6 41.9±13.9  60.7±7.1 59.3±7.3 

 Systolic blood pressure (mm Hg) 124.1±16.3 116.2±17.8  124.5±16.6 116.1±17.9  136.1±16.1 130.3±17.4 

 Total cholesterol (mmol/L) 4.9±0.9 4.9±1.0 
 

4.9±1.0 4.9±1.0 
 

4.8±0.9 5.0±0.9 

 Body mass index (kg/m2) 25.0±3.4 22.8±3.4  25.0±3.5 22.7±3.4  26.2±3.2 25.8±3.5 

 Education ≥10 years (%) a - -  - -  328 (58.5) 576 (60.6) 

 Physical inactive (%) b - -  - -  500 (89.1) 739 (77.7) 

 Data are presented as mean ± SD or n (%). 
a Educational level was not available in development or internal validation datasets. 
b Physical inactive was not available in development or internal validation datasets. 
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Table 2. Association between estimated CAIDE dementia risk score and different cognitive assessments: using multiple 
linear regression models 

Cognitive assessments 
Model 1a  Model 2b 

β (95% CI) P   β (95% CI) P  

MoCA score −0.240 (−0.419, −0.060) 0.009  −0.324 (−0.510, −0.138) 0.001 

Memory test score −0.317 (−0.488, −0.146) <0.001  −0.392 (−0.570, −0.214) <0.001 

Verbal fluency test score −0.306 (−0.519, −0.092) 0.005  −0.355 (−0.577, −0.132) 0.002 

TMT-A time (minutes) 0.039 (0.036, 0.139) 0.005  0.043 (0.015, 0.071) 0.003 

TMT-B time (minutes) 0.048 (0.017, 0.079) 0.002  0.060 (0.028, 0.092) <0.001 
a Model 1 adjusted for age (years) and sex. 
b Model 2 adjusted for age (years), sex, BMI (kg/m2), TC (mmol/L), educational level, marriage status, drinking status, smoking status, physical inactivity, 
depressive symptoms, APOE ε4 status, hypertension, diabetes, and self-reported diagnosis of coronary heart disease, stroke, cancer and chronic obstructive 
pulmonary disease. 
Note: The lower score of MoCA, memory test and verbal fluency indicate worse performance. The longer time of TMT-A, TMT-B represent worse performance. 
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Table 3. Association between quartiles of estimated CAIDE dementia risk score and different cognitive assessments: using 
analysis of covariance 
Estimated 
CAIDE 
dementia 
risk score 

MoCA score  Memory test score  Verbal fluency test 
score 

 TMT-A time (minutes)  TMT-B time (minutes) 

β (95% CI) P  β (95% CI) P  β (95% CI) P  β (95% CI) P  
β (95% CI) P 

Model 1a               

Quartile 1 0.000 (ref.) /  0.000 (ref.) /  0.000 (ref.) /  0.000 (ref.) /  0.000 (ref.) / 

Quartile 2 −0.314 (−0.825, 
0.198) 0.229  −0.563 (−1.050, 

−0.075) 0.024  −0.150 (−0.760, 
0.460) 0.630  

−0.015 
(−0.092, 
0.063) 

0.714 
 0.025 (−0.064, 

0.114) 0.581 

Quartile 3 −0.564 (−1.132, 
0.004) 0.051  −0.466 (−1.007, 

0.076) 0.092  −0.415 (−1.093, 
0.262) 0.230  0.063 (−0.023, 

0.149) 0.153  0.063 (−0.035, 
0.162) 0.208 

Quartile 4 −0.724 (−1.468, 
−0.208) 0.009  −0.979 (−1.579, 

−0.378) 0.001  −0.675 (−1.426, 
0.077) 0.078  0.124 (0.028, 

0.220) 0.011  0.118 (0.009, 
0.227) 0.034 

Test for 
linear 
trend 

−0.274 (−0.472, 
−0.075) 0.007  −0.271 (−0.460, 

−0.081) 0.005  −0.235 (−0.472, 
0.001) 0.051  0.049 (0.019, 

0.080) 0.001 
 0.041 (0.006, 

0.075) 0.021 

Model 2b               

Quartile 1 0.000 (ref.) /  0.000 (ref.) /  0.000 (ref.) /  0.000 (ref.) /  0.000 (ref.) / 

Quartile 2 −0.554 (−1.062, 
−0.046) 0.032  −0.731 (−1.217, 

−0.244) 0.003  −0.340 (−0.949, 
0.269) 0.274  0.092 (−0.059, 

0.095) 0.648  0.075 (−0.012, 
0.162) 0.092 

Quartile 3 −0.711 (−1.281, 
−0.141) 0.015  −0.565 (−1.110, 

−0.019) 0.043  −0.416 (−1.099, 
0.267) 0.232  0.062 (−0.024, 

0.148) 0.159  0.078 (−0.019, 
0.176) 0.117 

Quartile 4 −0.984 (−1.625, 
−0.343) 0.003  −1.077 (−1.691, 

−0.463) 0.001  −0.654 (−1.423, 
0.114) 0.095  0.111 (0.014, 

0.208) 0.025  0.119 (0.010, 
0.229) 0.033 

Test for 
linear 
trend 

−0.294 (−0.497, 
−0.091) 0.005  −0.284 (−0.479, 

−0.089) 0.004  −0.196 (−0.440, 
0.048) 0.115  0.039 (0.008, 

0.070) 0.012 
 0.034 (−0.001, 

0.069) 0.057 

a Model 1 adjusted for age (years) and sex.  
b Model 2 adjusted for age (years), sex, BMI (kg/m2), TC (mmol/L), educational level, marriage status, drinking status, smoking status, physical inactivity, 
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depressive symptoms, APOE ε4 status, hypertension, diabetes, and self-reported diagnosis of coronary heart disease, stroke, cancer and chronic obstructive 
pulmonary disease. 
Note: The lower score of MoCA, memory test and verbal fluency indicate worse performance. The longer time of TMT-A, TMT-B represent worse performance. 

 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted A

ugust 24, 2021. 
; 

https://doi.org/10.1101/2021.08.17.21262156
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2021.08.17.21262156


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.17.21262156doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.17.21262156


All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 24, 2021. ; https://doi.org/10.1101/2021.08.17.21262156doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.17.21262156

