ABSTRACT
During the COVID-19 pandemic authorities have been striving to obtain reliable predictions for the spreading dynamics of disease. We recently developed an in-homogeneous multi-”sub-populations” (multi-compartments: susceptible, exposed, pre-symptomatic, infectious, recovered) model, that accounts for the spatial in-homogeneous spreading of the infection and shown, for a variety of examples, how the epidemic curves are highly sensitive to location of epicenters, non-uniform population density, and local restrictions. In the present work we tested our model against real-life data from South Carolina during the period May 22 to July 22 (2020), that was available in the form of infection heat-maps and conventional epidemic curves. During this period, minimal restrictions have been employed, which allowed us to assume that the local reproduction number is constant in time. We accounted for the non-uniform population density in South Carolina using data from NASA, and predicted the evolution of infection heat-maps during the studied period. Comparing the predicted heat-maps with those observed, we find high qualitative resemblance. Moreover, the Pearson’s correlation coefficient is relatively high and does not get lower than 0.8, thus validating our model against real-world data. We conclude that our model accounts for the major effects controlling spatial in-homogeneous spreading of the disease. Inclusion of additional sub-populations (compartments), in the spirit of several recently developed models for COVID-19, can be easily performed within our mathematical framework.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding has been received for this work
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
1) All simulations data will be provided uppon request. 2) The sources of data used for comparsion with the simulations are properly referenced in the manuscript.