ABSTRACT
PRKN mutations are the most common recessive cause of Parkinson’s disease (PD) and are a promising target for gene and cell replacement therapies. Identification of biallelic PRKN patients (PRKN-PD) at the population scale, however, remains a challenge, as roughly half are copy number variants (CNVs) and many single nucleotide polymorphisms (SNPs) are of unclear significance. Additionally, the true prevalence and disease risk associated with heterozygous PRKN mutations is unclear, as a comprehensive assessment of PRKN SNPs and CNVs has not been performed at a population scale. To address these challenges, we evaluated PRKN mutations in 2 cohorts analyzed with both a genotyping array and exome or genome sequencing: the NIH PD cohort, a deeply phenotyped cohort of PD patients, and the UK Biobank, a population scale cohort with nearly half a million participants. Genotyping array identified the majority of PRKN mutations and at least 1 mutation in most biallelic PRKN mutation carriers in both cohorts. Additionally, in the NIH-PD cohort, functional assays of patient fibroblasts resolved variants of unclear significance in biallelic carriers and ruled out cryptic loss of function variants in monoallelic carriers. In the UK Biobank, we identified 2,692 PRKN CNVs from genotyping array data from nearly half a million participants (the largest collection to date). Deletions or duplications involving exons 2 accounted for roughly half of all CNVs and the vast majority (88%) involved exons 2, 3, or 4. Combining estimates from whole exome sequencing (from ∼200,000 participants) and genotyping array data, we found a pathogenic PRKN mutation in 1.8% of participants and 2 mutations in ∼1/7,800 participants. Those with 1 PRKN pathogenic variant were as likely as non-carriers to have PD (OR = 0.91, CI= 0.58 – 1.38, p-value = 0.76) or a parent with PD (OR = 1.12, CI = 0.94 – 1.31, p-value = 0.19). Together our results demonstrate that heterozygous pathogenic PRKN mutations are common in the population but do not increase the risk of PD. Additionally, they suggest a cost-effective framework to screen for biallelic PRKN patients at the population scale for targeted studies.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
NCT00018889
Funding Statement
This work was supported in part by the intramural programs of the National Institute of Neurological Disorders and the National Institute of Aging.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Institutional Review Board of NINDS
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.