Abstract
Background The COVID-19 pandemic in Russia has already resulted in 500,000 excess deaths, with more than 5.6 million cases registered officially by July 2021. Surveillance based on case reporting has become the core pandemic monitoring method in the country and globally. However, population-based seroprevalence studies may provide an unbiased estimate of the actual disease spread and, in combination with multiple surveillance tools, help to define the pandemic course. This study summarises results from four consecutive serological surveys conducted between May 2020 and April 2021 at St. Petersburg, Russia and combines them with other SARS-CoV-2 surveillance data.
Methods We conducted four serological surveys of two random samples (May–June, July–August, October–December 2020, and February–April 2021) from adults residing in St. Petersburg recruited with the random digit dialing (RDD), accompanied by a telephone interview to collect information on both individuals who accepted and declined the invitation for testing and account for non-response. We have used enzyme-linked immunosorbent assay CoronaPass total antibodies test (Genetico, Moscow, Russia) to report seroprevalence. We corrected the estimates for non-response using the bivariate probit model and also accounted the test performance characteristics, obtained from independent assay evaluation. In addition, we have summarised the official registered cases statistics, the number of hospitalised patients, the number of COVID-19 deaths, excess deaths, tests performed, data from the ongoing SARS-CoV-2 variants of concern (VOC) surveillance, the vaccination uptake, and St. Petersburg search and mobility trends. The infection fatality ratios (IFR) have been calculated using the Bayesian evidence synthesis model.
Findings After calling 113,017 random mobile phones we have reached 14,118 individuals who responded to computer-assisted telephone interviewing (CATI) and 2,413 provided blood samples at least once through the seroprevalence study. The adjusted seroprevalence in May–June, 2020 was 9.7% (95%: 7.7–11.7), 13.3% (95% 9.9–16.6) in July–August, 2020, 22.9% (95%: 20.3–25.5) in October–December, 2021 and 43.9% (95%: 39.7–48.0) in February–April, 2021. History of any symptoms, history of COVID-19 tests, and non-smoking status were significant predictors for higher seroprevalence. Most individuals remained seropositive with a maximum 10 months follow-up. 92.7% (95% CI 87.9–95.7) of participants who have reported at least one vaccine dose were seropositive. Hospitalisation and COVID-19 death statistics and search terms trends reflected the pandemic course better than the official case count, especially during the spring 2020. SARS-CoV-2 circulation showed rather low genetic SARS-CoV-2 lineages diversity that increased in the spring 2021. Local VOC (AT.1) was spreading till April 2021, but B.1.617.2 substituted all other lineages by June 2021. The IFR based on the excess deaths was equal to 1.04 (95% CI 0.80–1.31) for the adult population and 0.86% (95% CI 0.66–1.08) for the entire population.
Conclusion Approximately one year after the COVID-19 pandemic about 45% of St. Petersburg, Russia residents contracted the SARS-CoV-2 infection in, or 2.2 mln people. Combined with vaccination uptake of about 10% it was enough to slow the pandemic until the Delta VOC started to spread. Combination of several surveillance tools provides a comprehensive pandemic picture.
Funding Polymetal International plc.
Competing Interest Statement
Anton Barchuk reports personal fees from AstraZeneca, MSD, and Biocad outside the submitted work. Other authors have no conflict of interest to declare.
Clinical Trial
ISRCTN11060415
Clinical Protocols
Funding Statement
Polymetal International plc funded the serological study.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Research Planning Board approved the study of the European University at St. Petersburg (on May 20, 2020) and the Ethics Committee of the Clinic Scandinavia (on May 26, 2020). All research was performed following the relevant guidelines and regulations. Informed consent was obtained from all participants of the study. The study was registered with the following identifiers: Clinicaltrials.gov (NCT04406038, submitted on May 26, 2020, date of registration - May 28, 2020) and ISRCTN registry (ISRCTN11060415, submitted on May 26, 2020, date of registration - May 28, 2020). Official statistics, VOCs monitoring data, search terms trends, and mobility trends were obtained from open sources as aggregated data. Analysis based on open-source aggregated data does not require additional ethical permission in Russia.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All analyses were conducted in R, study data and code is available online (https://github.com/eusporg/spb_covid_study20).