Abstract
Introduction COVID-19 large scale immunization in the US has been associated with infrequent breakthrough positive molecular testing. Whether a positive test is associated with a high viral RNA load, specific viral variant, recovery of infectious virus, or symptomatic infection is largely not known.
Methods In this study, we identified 133 SARS-CoV-2 positive patients who had received two doses of either Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) vaccines, the 2nd of which was received between January and April of 2021. The positive samples were collected between January and May of 2021 with a time that extended from 2 to 100 days after the second dose. Samples were sequenced to characterize the whole genome and Spike protein changes and cycle thresholds that reflect viral loads were determined using a single molecular assay. Local SARS-CoV-2 IgG antibodies were examined using ELISA and specimens were grown on cell culture to assess the recovery of infectious virus as compared to a control unvaccinated cohort from a matched time frame.
Results Of 133 specimens, 24 failed sequencing and yielded a negative or very low viral load on the repeat PCR. Of 109 specimens that were used for further genome analysis, 68 (62.4%) were from symptomatic infections, 11 (10.1%) were admitted for COVID-19, and 2 (1.8%) required ICU admission with no associated mortality. The predominant virus variant was the alpha (B.1.1.7), however a significant association between lineage B.1.526 and amino acid change S: E484K with positives after vaccination was noted when genomes were compared to a large control cohort from a matched time frame. A significant reduction of the recovery of infectious virus on cell culture as well as delayed time to the first appearance of cytopathic effect was accompanied by an increase in local IgG levels in respiratory samples of vaccinated individuals but upper respiratory tract IgG levels were not different between symptomatic or asymptomatic infections.
Conclusions Vaccination reduces the recovery of infectious virus in breakthrough infections accompanied by an increase in upper respiratory tract local immune responses.
Funding National Institute of Health (The Johns Hopkins Center of Excellence in Influenza Research and Surveillance, HHSN272201400007C), Johns Hopkins University, Maryland Department of Health, Centers for Disease Control and Prevention.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
HHM is supported by the HIV Prevention Trials Network (HPTN) sponsored by the National Institute of Allergy and Infectious Diseases (NIAID), National Institute on Drug Abuse, National Institute of Mental Health, and Office of AIDS Research, of the NIH, DHHS (UM1 AI068613) the NIH RADx-Tech program (3U54HL143541-02S2), National Institute of Health RADx-UP initiative (Grant R01 DA045556-04S1), National Institute of Allergy and Infectious Diseases (Johns Hopkins Center of Excellence in Influenza Research and Surveillance HHSN272201400007C), the U. S. Centers for Disease Control (75D30121C11061), Johns Hopkins University President Fund Research Response, the Johns Hopkins Department of Pathology, and the Maryland Department of Health. This research was supported in part by the intramural research program of the National Institutes of Health.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethical considerations and Data availability The research Johns Hopkins Medical Institutions Institutional Review Board-X (JHM IRB-X) is constituted to meet the requirements of the Privacy Rule at section 45 CFR 164.512(i)(1)(i)(B) and is authorized and qualified to serve as the Privacy Board for human subjects research applications conducted by Johns Hopkins University faculty members. JHM IRB-3 approved IRB00221396 entitled: Genomic evolution of viral pathogens: impact on clinical severity and molecular diagnosis. IRB review included the granting of a waiver of consent based on the following criteria: 1) the research involves no more than minimal risk to subjects; 2) the waiver will not adversely affect the rights and welfare of the subjects; 3) the research could not be practicably carried out without the waiver; and 4) the IRB will advise if it is appropriate for participants to be provided with additional pertinent information after participation. This study was also approved for the inclusion of children as 'research not involving greater than minimal risk'. The permission of parents/guardians is waived. Assent is waived for all children. JHM IRB-X determined that there is no requirement for continuing review or progress report for this application. Remnant nasopharyngeal or lateral mid-turbinate nasal (NMT) clinical swab specimens from patients who tested positive for SARS-CoV-2 after the standard of care testing were used.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data are available within the manuscript and in the supplemental tables.