ABSTRACT
Tracking the COVID-19 pandemic has been a major challenge for policy makers. Although, several efforts are ongoing for accurate forecasting of cases, deaths, and hospitalization at various resolutions, few have been attempted for college campuses despite their potential to become COVID-19 hot-spots. In this paper, we present a real-time effort towards weekly forecasting of campus-level cases during the fall semester for four universities in Virginia, United States. We discuss the challenges related to data curation. A causal model is employed for forecasting with one free time-varying parameter, calibrated against case data. The model is then run forward in time to obtain multiple forecasts. We retrospectively evaluate the performance and, while forecast quality suffers during the campus reopening phase, the model makes reasonable forecasts as the fall semester progresses. We provide sensitivity analysis for the several model parameters. In addition, the forecasts are provided weekly to various state and local agencies.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The authors would like to thank members of the Network Systems Science and Advanced Computing (NSSAC) Division for their thoughtful comments and suggestions related to epidemic modeling and response support. We thank members of the Biocomplexity Institute and Initiative, University of Virginia, for useful discussion and suggestions. This work was partially supported by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and Virginia Dept of Health Grant VDH-21-501-0141.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This research work includes all publicly available data and does not use patient data.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data and code will be made available upon request.