A classification model to predict specialty drug use
Xianglian Ni, Andrew Fairless, Jasmine M. McCammon, Farbod Rahmanian, Heather Lavoie
doi: https://doi.org/10.1101/2021.06.30.21259718
Xianglian Ni
1Geneia LLC 50 Commercial St, Manchester, NH 03101
Andrew Fairless
1Geneia LLC 50 Commercial St, Manchester, NH 03101
Jasmine M. McCammon
1Geneia LLC 50 Commercial St, Manchester, NH 03101
Farbod Rahmanian
2Geneia LLC 1000 N Cameron St Ste 500, Harrisburg, PA 17103
Heather Lavoie
1Geneia LLC 50 Commercial St, Manchester, NH 03101
Data Availability
The data used for this manuscript are commercially licensed from the CCAE database and not publically available. The independent dataset contains sensitive personal health information and is therefore also not publically available.
Posted July 05, 2021.
A classification model to predict specialty drug use
Xianglian Ni, Andrew Fairless, Jasmine M. McCammon, Farbod Rahmanian, Heather Lavoie
medRxiv 2021.06.30.21259718; doi: https://doi.org/10.1101/2021.06.30.21259718
Subject Area
Subject Areas
- Addiction Medicine (405)
- Allergy and Immunology (715)
- Anesthesia (209)
- Cardiovascular Medicine (2989)
- Dermatology (254)
- Emergency Medicine (447)
- Epidemiology (12869)
- Forensic Medicine (12)
- Gastroenterology (840)
- Genetic and Genomic Medicine (4664)
- Geriatric Medicine (428)
- Health Economics (735)
- Health Informatics (2968)
- Health Policy (1079)
- Hematology (394)
- HIV/AIDS (940)
- Medical Education (432)
- Medical Ethics (116)
- Nephrology (478)
- Neurology (4449)
- Nursing (239)
- Nutrition (653)
- Oncology (2313)
- Ophthalmology (659)
- Orthopedics (260)
- Otolaryngology (329)
- Pain Medicine (286)
- Palliative Medicine (85)
- Pathology (505)
- Pediatrics (1207)
- Primary Care Research (506)
- Public and Global Health (7047)
- Radiology and Imaging (1561)
- Respiratory Medicine (927)
- Rheumatology (447)
- Sports Medicine (389)
- Surgery (495)
- Toxicology (60)
- Transplantation (214)
- Urology (186)