Abstract
With age, the musculoskeletal system undergoes significant changes, leading to diseases such as arthritis and osteoporosis. Due to the aging of the world population, the prevalence of such diseases is therefore expected to starkly increase in the coming decades. While numerous biological age predictors have been developed to assess musculoskeletal aging, it remains unclear whether these different approaches and data capture a single aging process, or if the diverse joints and bones in the body age at different rates. In the following, we leverage 42,000 full body, spine, hip and knee X-ray images and musculoskeletal biomarkers from the UK Biobank and use artificial intelligence to build the most accurate musculoskeletal aging predictor to date (RMSE=2.65±0.01 years; R-Squared=87.6±0.1%). Our predictor is composite and can be used to assess spine age, hip age and knee age, in addition to general musculoskeletal aging. We find that accelerated musculoskeletal aging is moderately correlated between these different musculoskeletal dimensions (e.g hip vs. knee: Pearson correlation=.351±.004). Musculoskeletal aging is heritable at more than 35%, and the genetic factors are partially shared between joints (e.g hip vs. knee: genetic correlation=.52±.04). We identified single nucleotide polymorphisms associated with accelerated musculoskeletal aging in approximately ten genes for each musculoskeletal dimension. General musculoskeletal aging is for example associated with a TBX15 variant linked to Cousin syndrome and acromegaloid facial appearance syndrome. Finally, we identified biomarkers, clinical phenotypes, diseases, environmental and socioeconomic variables associated with accelerated musculoskeletal aging in each dimension. We conclude that, while the aging of the different components of the musculoskeletal system is connected, each bone and joint can age at significantly different rates.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
NIEHS R00 ES023504 NIEHS R21 ES25052. NIAID R01 AI127250 NSF 163870 MassCATS, Massachusetts Life Science Center Sanofi The funders had no role in the study design or drafting of the manuscript(s).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Harvard internal review board (IRB) deemed the research as non-human subjects research (IRB: IRB16-2145).
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
We used the UK Biobank (project ID: 52887). The code can be found at https://github.com/Deep-Learning-and-Aging. The results can be interactively and extensively explored at https://www.multidimensionality-of-aging.net/. We will make the biological age phenotypes available through UK Biobank upon publication. The GWAS results can be found at https://www.dropbox.com/s/59e9ojl3wu8qie9/Multidimensionality_of_aging-GWAS_results.zip?dl=0.
https://www.multidimensionality-of-aging.net/
https://github.com/alanlegoallec/Multidimensionality_of_Aging
https://www.dropbox.com/s/59e9ojl3wu8qie9/Multidimensionality_of_aging-GWAS_results.zip?dl=0