Abstract
Stochastic methods for modelling disease dynamics enables the direct computation of the probability of elimination of transmission (EOT). For the low-prevalence disease of human African trypanosomiasis (gHAT), we develop a new mechanistic model for gHAT infection that determines the full probability distribution of the gHAT infection using Kolmogorov forward equations. The methodology allows the analytical investigation of the probabilities of gHAT elimination in the spatially-connected villages of the Kwamouth and Mosango health zones of the Democratic Republic of Congo, and captures the uncertainty using exact methods. We predict that, if current active and passive screening continue at current levels, local elimination of infection will occur in 2029 for Mosango and after 2040 in Kwamouth, respectively. Our method provides a more realistic approach to scaling the probability of elimination of infection between single villages and much larger regions, and provides results comparable to established models without the requirement of detailed infection structure. The novel flexibility allows the interventions in the model to be implemented specific to each village, and this introduces the framework to consider the possible future strategies of test-and-treat or direct treatment of individuals living in villages where cases have been found, using a new drug.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the Bill and Melinda Gates Foundation (www.gatesfoundation.org) in partnership with the Task Force for Global Health through the NTD Modelling Consortium [OPP1184344] (C.N.D., K.S.R. and M.J.K.) and the Bill and Melinda Gates Foundation through the Human African Trypanosomiasis Modelling and Economic Predictions for Policy (HAT MEPP) project [OPP1177824] (K.S.R., and M.J.K.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Not applicable
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Epidemiological data for the study were provided by the WHO in the frame of the Atlas of gHAT which may be viewed at www.who.int/trypanosomiasis_african/country/risk_AFRO/en and may be requested through Jose Ramon Franco (francoj{at}who.int).