Abstract
Objective To determine whether antibodies against the SARS-CoV-2 spike protein following BNT162B2 (Pfizer-BioNTech) COVID-19 mRNA vaccination cross-react with human syncytin-1 protein, and if BNT162B2 mRNA enters breast milk.
Methods In this observational cohort study of female front-line workers with no history of COVID-19 infection, we amplified BNT162B2 mRNA in plasma and breast milk and assayed anti-SARS-CoV-2 neutralising antibodies and anti-human syncytin-1 binding antibodies in plasma, at early (1-4 days) and late (4-7 weeks) time points following first-dose vaccination.
Results Fifteen consented participants (mean age 40.4 years, various ethnicities) who received at least one dose of BNT162B2, including five breast-feeding women and two women who were inadvertently vaccinated in early pregnancy, were recruited. BNT162B2 mRNA, detected by amplifying part of the spike-encoding region, was detected in plasma 1-4 days following the first dose (n=13), but not 4-5 weeks later (n=2), nor was the mRNA isolated from aqueous or lipid breast milk fractions collected 0-7 days post-vaccination (n=5). Vaccine recipients demonstrated strong SARS-CoV-2 neutralising activity by at least four weeks after the first dose (n=15), including the two pregnant women. None had placental anti-syncytin-1 binding antibodies at either time-point following vaccination.
Conclusions BNT162B2-vaccinated women did not transmit vaccine mRNA to breast milk, and did not produce a concurrent humoral response to syncytin-1, suggesting that cross-reactivity to syncytin-1 on the developing trophoblast, or other adverse effects in the breast-fed infant from vaccine mRNA ingestion, are unlikely.
What are the novel findings of this work?COVID-19 vaccination with BNT162B2 did not elicit a cross-reacting humoral response to human syncytin-1 despite robust neutralising activity to the SARS-CoV2 spike protein, and while vaccine mRNA was isolated from plasma, it was not found in breast milk.
What are the clinical implications of this work?Our work directly addresses the fertility and breastfeeding concerns fuelling vaccine hesitancy among reproductive-age women, by suggesting that BNT162B2 vaccination is unlikely to cause adverse effects on the developing trophoblast, via cross-reacting anti-syncytin-1 antibodies, or to the breastfed neonate, via mRNA breast milk transmission.
Competing Interest Statement
Paul Tambyah received funding from Johnson&Johnson, Arcturus, Roche, AJ Biologicals, all paid to the institution. The authors declare no other conflicts of interest that may affect the objectivity of this work.
Funding Statement
This study was funded by National University of Singapore IRB Appointment Research Fund to author PAT and National Medical Research Council, Singapore COVID-19 Gap Funding (COVID19FR3-0090) to co-authors WK,YS and SH.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
National Healthcare Group Domain-specific Review Board DSRB)approved study DSRB2012/00917
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data will be made available by the authors upon request