Abstract
Thymidine Kinase 1 (TK1) is primarily known as a cancer biomarker with good prognostic capabilities for liquid and solid malignancies. However, recent studies targeting TK1 at protein and mRNA levels have shown that TK1 may be useful as a tumor target. In order to examine the use of TK1 as a tumor target, it is necessary to develop therapeutics specific for TK1. Single domain antibodies (sdAbs), represent an exciting approach for the development of immunotherapeutics due to their cost-effective production and higher tumor penetration than conventional antibodies. In this study, we isolated sdAb fragments specific to human TK1 from a human sdAb library. A total of 400 sdAbs were screened through 5 rounds of selection by monoclonal phage ELISA. The most sensitive sdAb fragments were selected as candidates for preclinical testing. The sdAb fragments showed specificity for human TK1 in phage ELISA, Western blot analysis and had a limit of detection of 3.9 ng/ml for 4-H-TK1_A1 and 1.9 ng/ml for 4-H-TK1_D1. The antibody fragments were successfully expressed and used for detection of membrane associated TK1 (mTK1) through flow cytometry on cancer cells [lung (∼95%), colon (∼87%), breast (∼53%)] and healthy human mono nuclear cells (MNC). The most sensitive antibody fragments, 4-H-TK1_A1 and 4-H-TK1_D1 were fused to an engineered IgG1 Fc fragment. When added to cancer cells expressing mTK1 co-cultured with human MNC, the anti-TK1-sdAb-IgG1_A1 and D1 were able to elicit a significant antibody-dependent cell-mediated cytotoxicity (ADCC) response by human MNCs against lung cancer cells compared to isotype controls (P<0.0267 and P<0.0265, respectively). To our knowledge this is the first time that the isolation and evaluation of human anti TK1 single domain antibodies using phage display technology has been reported. The antibody fragments isolated here may represent a valuable resource for the detection and the targeting of TK1 in tumor cells.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Funding for this research was obtained partially from Thunder Biotech. Funding was also provided through a cancer fellowship from the BYU Simmons Center for Cancer Research and the department of Microbiology and Molecular Biology at Brigham Young University. Finally, this research was also partially sponsored with a scholarship from the Mexican Council of Science and Technology (CONACyT)
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Isolation of human MNCs and serum from blood was obtained under approval of the Brigham Young University Institutional Review Board number 1734
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All the relevant information is contained within this manuscript. Additional files regarding this study will be available from the authors upon a reasonable request basis