Abstract
Although our understanding of Alzheimer’s disease (AD) has greatly improved in recent years, the root cause remains unclear, making it difficult to find effective diagnosis and treatment options. Our understanding of the pathophysiology underlying AD has benefited from genomic analyses, including those that leverage polygenic risk score (PRS) models of disease. In many aspects of genomic research the use of functional annotation has been able to improve the power of genomic models. Here, we leveraged genomic functional annotations to build tissue-specific PRS models for 13 tissues and applied the scores to two longitudinal cohort studies of AD. The PRS model that was most predictive of AD diagnosis relative to cognitively unimpaired participants was the liver tissue score: n = 1,116; odds ratio (OR) (95% confidence interval [CI]) = 2.19 (1.70-2.82) per standard deviation (SD) increase in PRS; P = 1.46 × 10−9. After removing the APOE locus from the PRS models, the liver score was the only PRS to remain statistically significantly associated with AD diagnosis after multiple testing correction, although the effect was weaker: OR (95% CI) = 1.55 (1.19-2.02) per SD increase in PRS; P = 0.0012. In follow-up analysis, the liver PRS was statistically significantly associated with levels of amyloid (P = 3.53 × 10−6) and tau (P = 1.45 × 10−5) in the cerebrospinal fluid (CSF) (when the APOE locus was included) and nominally associated with CSF soluble TREM2 levels (P = 0.042) (when the APOE locus was excluded). These findings provide further evidence of the role of the liver-functional genome in AD and the benefits of incorporating functional annotation into genomic research.
Competing Interest Statement
Author KB has served as a consultant, at advisory boards, or at data monitoring committees for Abcam, Axon, Biogen, JOMDD/Shimadzu. Julius Clinical, Lilly, MagQu, Novartis, Roche Diagnostics, and Siemens Healthineers, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program. Author GK is a full-time employee of Roche Diagnostics GmbH. Author IS is a full-time employee and shareholder of Roche Diagnostics International Ltd. Author SCJ served as a consultant to Roche Diagnostics in 2018. Other authors have no competing interests to declare.
Funding Statement
This research is supported by National Institutes of Health (NIH) grants R01AG27161 (Wisconsin Registry for Alzheimer Prevention: Biomarkers of Preclinical AD), R01AG054047 (Genomic and Metabolomic Data Integration in a Longitudinal Cohort at Risk for Alzheimer's Disease), R21AG067092 (Identifying Metabolomic Risk Factors in Plasma and Cerebrospinal Fluid for Alzheimer's Disease), R01AG037639 (White Matter Degeneration: Biomarkers in Preclinical Alzheimer's Disease), P30AG017266 (Center for Demography of Health and Aging), and P50AG033514 and P30AG062715 (Wisconsin Alzheimer's Disease Research Center Grant), the Helen Bader Foundation, Northwestern Mutual Foundation, Extendicare Foundation, State of Wisconsin, the Clinical and Translational Science Award (CTSA) program through the NIH National Center for Advancing Translational Sciences (NCATS) grant UL1TR000427, and the University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation. This research was supported in part by the Intramural Research Program of the National Institute on Aging. Computational resources were supported by a core grant to the Center for Demography and Ecology at the University of Wisconsin-Madison (P2CHD047873). We also acknowledge use of the facilities of the Center for Demography of Health and Aging at the University of Wisconsin-Madison, funded by NIA Center grant P30AG017266. Author DJP was supported by an NLM training grant to the Bio-Data Science Training Program (T32LM012413). Author BFD was supported by an NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM 5T15LM007359). Author YKD was supported by a training grant from the National Institute on Aging (T32AG000213). Author KB was supported by the Swedish Research Council (#2017-00915), the Alzheimer Drug Discovery Foundation (ADDF), USA (#RDAPB-201809-2016615), the Swedish Alzheimer Foundation (#AF-742881), Häjrnfonden, Sweden (#FO2017-0243), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986), the European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236), and the NIH, USA, (grant #1R01AG068398-01).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study was performed as part of the GeneRations Of WRAP (GROW) study, which was approved by the University of Wisconsin Health Sciences Institutional Review Board. Participants in the WADRC and WRAP studies provided written informed consent.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵* Denotes joint senior authorship
Data Availability
The datasets analyzed in this study may be requested from the WADRC at https://www.adrc.wisc.edu/apply-resources.