ABSTRACT
The rapid emergence and expansion of novel SARS-CoV-2 variants is an unpleasant surprise that threatens our ability to achieve herd immunity for COVID-19. These fitter SARS-CoV-2 variants often harbor multiple point mutations, conferring one or more traits that provide an evolutionary advantage, such as increased transmissibility, immune evasion and longer infection duration. In a number of cases, variant emergence has been linked to long-term infections in individuals who were either immunocompromised or treated with convalescent plasma. In this paper, we explore the mechanism by which fitter variants of SARS-CoV-2 arise during long-term infections using a mathematical model of viral evolution and identify means by which this evolution can be slowed. While viral load and infection duration play a strong role in favoring the emergence of such variants, the overall probability of emergence and subsequent transmission from any given infection is low, suggesting that viral variant emergence and establishment is a product of random chance. To the extent that luck plays a role in favoring the emergence of novel viral variants with an evolutionary advantage, targeting these low-probability random events might allow us to tip the balance of fortune away from these advantageous variants and prevent them from being established in the population.
Competing Interest Statement
A.C., M.S., and U.T. are employees and shareholders of Fractal Therapeutics. D.V.E., A.N., and D.J.-M. are shareholders of Fractal Therapeutics.
Funding Statement
A.N. acknowledges funding from the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1762114. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Fractal Therapeutics provided support in the form of salaries for authors M.S. and U.T., but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All simulation data are presented in the manuscript. No new experimental or clinical data were collected.