Single Site performance of AI software for stroke detection and Triage
Dan Paz, Daniel Yagoda, View ORCID ProfileTheodore Wein
doi: https://doi.org/10.1101/2021.04.02.21253083
Dan Paz
1Neuroradiology division, The department of radiology, McGill University, Quebec, Canada
Daniel Yagoda
2The Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
Theodore Wein
3Faculty of Medicine, McGill University, Montreal, Quebec, Canada
4Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
5Division of Neurology, St. Mary’s Hospital, Montreal, Quebec, Canada
Posted April 07, 2021.
Single Site performance of AI software for stroke detection and Triage
Dan Paz, Daniel Yagoda, Theodore Wein
medRxiv 2021.04.02.21253083; doi: https://doi.org/10.1101/2021.04.02.21253083
Subject Area
Subject Areas
- Addiction Medicine (403)
- Allergy and Immunology (712)
- Anesthesia (207)
- Cardiovascular Medicine (2971)
- Dermatology (253)
- Emergency Medicine (446)
- Epidemiology (12819)
- Forensic Medicine (12)
- Gastroenterology (830)
- Genetic and Genomic Medicine (4623)
- Geriatric Medicine (423)
- Health Economics (732)
- Health Informatics (2943)
- Health Policy (1073)
- Hematology (393)
- HIV/AIDS (934)
- Medical Education (430)
- Medical Ethics (116)
- Nephrology (476)
- Neurology (4412)
- Nursing (238)
- Nutrition (653)
- Oncology (2296)
- Ophthalmology (652)
- Orthopedics (260)
- Otolaryngology (327)
- Pain Medicine (282)
- Palliative Medicine (84)
- Pathology (503)
- Pediatrics (1200)
- Primary Care Research (503)
- Public and Global Health (7008)
- Radiology and Imaging (1545)
- Respiratory Medicine (921)
- Rheumatology (445)
- Sports Medicine (386)
- Surgery (491)
- Toxicology (60)
- Transplantation (212)
- Urology (185)