ABSTRACT
Monitoring SARS-CoV-2 genetic diversity is strongly indicated because diversifying selection may lead to the emergence of novel variants resistant to naturally acquired or vaccine-induced immunity. To date, most data on SARS-CoV-2 genetic diversity has come from the sequencing of clinical samples, but such studies may suffer limitations due to costs and throughput. Wastewater-based epidemiology may provide an alternative and complementary approach for monitoring communities for novel variants. Given that SARS-CoV-2 can infect the cells of the human gut and is found in high concentrations in feces, wastewater may be a valuable source of SARS-CoV-2 RNA, which can be deep sequenced to provide information on the circulating variants in a community. Here we describe a safe, affordable protocol for the sequencing of SARS-CoV-2 RNA using high-throughput Illumina sequencing technology. Our targeted sequencing approach revealed the presence of mutations associated with several Variants of Concern at appreciable frequencies. Our work demonstrates that wastewater-based SARS-CoV-2 sequencing can inform surveillance efforts monitoring the community spread of SARS-CoV-2 Variants of Concern and detect the appearance of novel emerging variants more cheaply, safely, and efficiently than the sequencing of individual clinical samples.
IMPORTANCE The SARS-CoV-2 pandemic has caused millions of deaths around the world as countries struggle to contain infections. The pandemic will not end until herd immunity is reached, that is, when most of the population has either recovered from SARS-CoV-2 infection or is vaccinated against SARS-CoV-2. However, the emergence of new SARS-CoV-2 variants of concern threatens to erase gains. Emerging new variants may re-infect persons who have recovered from COVID-19 or may evade vaccine-induced immunity. However, scaling up SARS-CoV-2 genetic sequencing to monitor Variants of Concern in communities around the world is challenging. Wastewater-based sequencing of SARS-CoV-2 RNA can be used to monitor the presence of emerging variants in large communities to enact control measures to minimize the spread of these variants. We describe here the identification of alleles associated with several variants of concern in wastewater obtained from NYC watersheds.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was funded in part by the New York City Department of Environmental Protection.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study was approved by the Queens College Institutional Biosafety Committee Protocol IBC-03.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.