Abstract
Alzheimer’s Disease (AD) is a devastating disorder that is still not fully understood. Sex modifies AD vulnerability, but the reasons for this are largely unknown. There has been efforts to understand select comorbidities, covariates, and biomarkers of AD, with and without sex stratification - but there has not yet been an integrative, big data approach to identify clinical and sex specific associations with AD in an unbiased manner. Electronic Medical Records (EMR) contain extensive information on patients, including diagnoses, medications, and lab test results, providing a unique opportunity to apply phenotyping approaches to derive insights into AD clinical associations. Here, we utilize EMRs to perform deep clinical phenotyping and network analysis of AD patients to provide insight into its clinical characteristics and sex-specific clinical associations. We performed embeddings and network representation of patient diagnoses to visualize patient heterogeneity and comorbidity interactions and observe greater connectivity of diagnosis among AD patients compared to controls. We performed enrichment analysis between cases and controls and identified multiple known and new diagnostic and medication associations, such as positive associations with AD and hypertension, hyperlipidemia, anemia, and urinary tract infection - and negative associations with neoplasms and opioids. Furthermore, we performed sex-specific enrichment analyses to identify novel sex-specific associations with AD, such as osteoporosis, depression, cardiovascular risk factors, and musculoskeletal disorders diagnosed in female AD patients and neurological, behavioral, and sensory disorders enriched in male AD patients. We also analyzed lab test results, resulting in clusters of patient phenotype groups, and we observed greater calcium and lower alanine aminotransferase (ALT) in AD, as well as abnormal hemostasis labs in female AD. With this method of phenotyping, we can represent AD complexity, and identify clinical factors that can be followed-up for further temporal and predictive analysis or integrate with molecular data to aid in diagnosis and generate hypotheses about disease mechanisms. Furthermore, the negative associations can help identify factors that may decrease likelihood of AD and help motivate future drug repurposing or therapeutic approaches.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Primary support through Grant # NIA R01AG060393, R01AG057683 (A.T., T.O., C.W.S., M.S.). Additional support provided by NIA RF1AG068325 (D.B.D) and Medical Scientist Training Program T32GM007618 (A.T.).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The use of the de-identified clinical dataset was approved by the Institutional Review Board (IRB) at UCSF (Study #20-32422)
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
A visualization of comorbidities and networks can be found at https://vizad.org. Comorbidity tables can also be found in the supplement.