Abstract
Background Musculoskeletal models enable us to estimate muscle-tendon length, which has been shown to improve clinical decision-making and outcomes in children with cerebral palsy. Most clinical gait analysis services, however, do not include muscle-tendon length estimation in their clinical routine. This is due, in part, to a lack of knowledge and trust in the musculoskeletal models, and to the complexity involved in the workflow to obtain the muscle-tendon length.
Research question Can the joint angles obtained with the conventional gait model (CGM) be used to generate accurate muscle-tendon length estimates?
Methods Three-dimensional motion capture data of 15 children with cerebral palsy and 15 typically developing children were retrospectively analyzed and used to estimate muscle-tendon length with the following four modelling frameworks: (1) 2392-OSM-IK-angles: standard OpenSim workflow including scaling, inverse kinematics and muscle analysis; (2) 2392-OSM-CGM-angle: generic 2392-OpenSim model driven with joint angles from the CGM; (3) modif-OSM-IK-angles: standard OpenSim workflow including inverse kinematics and a modified model with segment coordinate systems and joint degrees-of-freedom similar to the CGM; (4) modif-OSM-CGM-angles: modified model driven with joint angles from the CGM. Joint kinematics and muscle-tendon length were compared between the different modelling frameworks.
Results Large differences in hip joint kinematics were observed between the CGM and the 2392-OpenSim model. The modif-OSM showed similar kinematics as the CGM. Muscle-tendon length obtained with modif-OSM-IK-angles and modif-OSM-CGM-angles were similar, whereas large differences in some muscle-tendon length were observed between 2392-OSM-IK-angles and 2392-OSM-CGM-angles.
Significance The modif-OSM-CGM-angles framework enabled us to estimate muscle-tendon lengths without the need for scaling a musculoskeletal model and running inverse kinematics. Hence, muscle-tendon length estimates can be obtained simply, without the need for the complexity, knowledge and time required for musculoskeletal modeling and associated software. An instruction showing how the framework can be used in a clinical setting is provided on https://github.com/HansUniVie/MuscleLength.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No funding was received for this work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study involved data previously collected for clinical purposes. Patients gave written consent for the use of their medical records in research and publication when the clinical services occurred. Data were recorded so that individuals could not be identified directly or through identifiers. The University of Minnesota Institutional Review Board (IRB) ruled that the study (STUDY00012420) was not research involving human subjects as defined by the Department of Health and Human Services and Food and Drug Administration regulations. To arrive at this determination, the IRB used WORKSHEET: Human Research (HRP-310).
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The data are not publicly available due to them containing information that could compromise research participant privacy or consent. Explicit consent to release data was not obtained from the patients, and data were collected up to 15 years ago. Thus, the vast majority of patients cannot be asked to provide their consent for release of their data. The data that support the findings of this study are available from the last author (MHS) upon reasonable request and subject to data sharing agreements.