Abstract
To provide appropriate levels of stimulation, retinal prostheses must be calibrated to an individual’s perceptual thresholds (‘system fitting’). Nonfunctional electrodes may then be deactivated to reduce power consumption and improve visual outcomes. However, thresholds vary drastically not just across electrodes but also over time, thus calling for a more flexible electrode deactivation strategy. Here we present an explainable artificial intelligence (XAI) model fit on a large longitudinal dataset that can 1) predict at which point in time the manufacturer chose to deactivate an electrode as a function of routine clinical measures (‘predictors’) and 2) reveal which of these predictors were most important. The model predicted electrode deactivation from clinical data with 60.8% accuracy. Performance increased to 75.3% with system fitting data, and to 84% when thresholds from follow-up examinations were available. The model further identified subject age and time since blindness onset as important predictors of electrode deactivation. An accurate XAI model of electrode deactivation that relies on routine clinical measures may benefit both the retinal implant and wider neuroprosthetics communities.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
N/A
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Our study, which did not involve human subjects research, was exempt from IRB approval.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
zuyinghu{at}ucsb.edu
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.