Abstract
Given the spread of COVID-19 to vast geographical regions and populations, it is not feasible to undergo or recommend the RT-PCR based tests to all individuals with flu-like symptoms. The reach of RT-PCR based testing is still limited due to the high cost of the test and huge population in few countries. Thus, alternative methods for COVID-19 infection risk prediction can be useful. We built an explainable artificial intelligence (AI) based integrated web-based prospective framework for COVID-19 risk prediction. We employed a two-step procedure for the non-clinical prediction of COVID19 infection risk. In the first step we assess the initial risk of COVID19 infection based on carefully selected parameters associated with COVID-19 positive symptoms from recent research. Generally, X-ray scans are cheaper and easily available in most government and private health centres. Therefore, based on the outcome of the computed initial risk in first step, we further provide an optional prediction using the chest X-ray scans in the second step of our proposed AI based prospective framework. Since there is a bottleneck to undergo an expensive RT-PCR based confirmatory test in economically backward nations, this is a crucial part of our explainable AI based prospective framework. The initial risk assessment outcome is analysed in combination with the advanced deep learning-based analysis of chest X-ray scans to provide an accurate prediction of COVID-19 infection risk. This prospective web-based AI framework can be employed in limited resource settings after clinical validation in future. The cost and time associated with the adoption of this prospective AI based prospective framework will be minimal and hence it will be beneficial to majority of the population living in low-income settings such as small towns and rural areas that have limited access to advanced healthcare facilities.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No funding is received for this work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Not applicable.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
E-mail Addresses: vishal.sharma.17csc{at}bml.edu.in (Vishal Sharma); piyush.17csc{at}bml.edu.in (Piyush); samarth.chhatwal.17csc{at}bml.edu.in (Samarth Chhatwal); bipin.singh{at}bmu.edu.in
↵* Phone: +91-8299817295
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.