Deep learning saliency maps do not accurately highlight diagnostically relevant regions for medical image interpretation
View ORCID ProfileAdriel Saporta, View ORCID ProfileXiaotong Gui, View ORCID ProfileAshwin Agrawal, View ORCID ProfileAnuj Pareek, Steven QH Truong, Chanh DT Nguyen, Van-Doan Ngo, Jayne Seekins, Francis G. Blankenberg, Andrew Y. Ng, Matthew P. Lungren, View ORCID ProfilePranav Rajpurkar
doi: https://doi.org/10.1101/2021.02.28.21252634
Adriel Saporta
1Stanford University Department of Computer Science, USA
BA MBAXiaotong Gui
1Stanford University Department of Computer Science, USA
BAAshwin Agrawal
1Stanford University Department of Computer Science, USA
MSAnuj Pareek
2Stanford Center for Artificial Intelligence in Medicine and Imaging, USA
MD PhDSteven QH Truong
3VinBrain, Vietnam
MBAChanh DT Nguyen
3VinBrain, Vietnam
4VinUniversity, Vietnam
PhDVan-Doan Ngo
5Vinmec International Hospital, Vietnam
MDJayne Seekins
6Stanford University School of Medicine, Department of Radiology, USA
DOFrancis G. Blankenberg
6Stanford University School of Medicine, Department of Radiology, USA
MDAndrew Y. Ng
1Stanford University Department of Computer Science, USA
PhDMatthew P. Lungren
2Stanford Center for Artificial Intelligence in Medicine and Imaging, USA
MD MPHPranav Rajpurkar
1Stanford University Department of Computer Science, USA
MSData Availability
CheXpert data is available at https://stanfordmlgroup.github.io/competitions/chexpert/. The validation set and corresponding benchmark radiologist annotations will be available online for the purpose of extending the study.
Posted March 02, 2021.
Deep learning saliency maps do not accurately highlight diagnostically relevant regions for medical image interpretation
Adriel Saporta, Xiaotong Gui, Ashwin Agrawal, Anuj Pareek, Steven QH Truong, Chanh DT Nguyen, Van-Doan Ngo, Jayne Seekins, Francis G. Blankenberg, Andrew Y. Ng, Matthew P. Lungren, Pranav Rajpurkar
medRxiv 2021.02.28.21252634; doi: https://doi.org/10.1101/2021.02.28.21252634
Deep learning saliency maps do not accurately highlight diagnostically relevant regions for medical image interpretation
Adriel Saporta, Xiaotong Gui, Ashwin Agrawal, Anuj Pareek, Steven QH Truong, Chanh DT Nguyen, Van-Doan Ngo, Jayne Seekins, Francis G. Blankenberg, Andrew Y. Ng, Matthew P. Lungren, Pranav Rajpurkar
medRxiv 2021.02.28.21252634; doi: https://doi.org/10.1101/2021.02.28.21252634
Subject Area
Subject Areas
- Addiction Medicine (382)
- Allergy and Immunology (699)
- Anesthesia (191)
- Cardiovascular Medicine (2840)
- Dermatology (243)
- Emergency Medicine (428)
- Epidemiology (12551)
- Forensic Medicine (10)
- Gastroenterology (802)
- Genetic and Genomic Medicine (4424)
- Geriatric Medicine (401)
- Health Economics (715)
- Health Informatics (2849)
- Health Policy (1047)
- Hematology (375)
- HIV/AIDS (893)
- Medical Education (413)
- Medical Ethics (114)
- Nephrology (461)
- Neurology (4183)
- Nursing (221)
- Nutrition (616)
- Oncology (2199)
- Ophthalmology (623)
- Orthopedics (254)
- Otolaryngology (317)
- Pain Medicine (267)
- Palliative Medicine (81)
- Pathology (486)
- Pediatrics (1171)
- Primary Care Research (482)
- Public and Global Health (6774)
- Radiology and Imaging (1487)
- Respiratory Medicine (899)
- Rheumatology (430)
- Sports Medicine (369)
- Surgery (473)
- Toxicology (57)
- Transplantation (200)
- Urology (174)