Abstract
In medicine, randomized clinical trials (RCT) are the gold standard for informing treatment decisions. Observational comparative effectiveness research (CER) is often plagued by selection bias, and expert-selected covariates may not be sufficient to adjust for confounding. We explore how the unstructured clinical text in electronic medical records (EMR) can be used to reduce selection bias and improve medical practice. We develop a method based on natural language processing to uncover interpretable potential confounders from the clinical text. We validate our method by comparing the hazard ratio (HR) from survival analysis with and without the confounders against the results from established RCTs. We apply our method to four study cohorts built from localized prostate and lung cancer datasets from the Stanford Cancer Institute Research Database and show that our method adjusts the HR estimate towards the RCT results. We further confirm that the uncovered terms can be interpreted by an oncologist as potential confounders. This research more credible causal inference using data from EMRs, offers a transparent way to improve the design of observational CER, and could inform high-stakes medical decisions. Our method can also be applied to studies within and beyond medicine to extract important information from observational data to support decisions.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research is funded by the Stanford Human-Centered Artificial Intelligence Institute and the Department of Management Science and Engineering.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This research is approved by the Stanford Institutional Review Board.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
We added an additional supplement and corrections/revisions throughout the paper.
Data Availability
The data is not available for sharing.