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Abstract

In medicine, randomized clinical trials (RCT) are the gold standard for informing

treatment decisions. Observational comparative effectiveness research (CER) is often

plagued by selection bias, and expert-selected covariates may not be sufficient to adjust

for confounding. We explore how the unstructured clinical text in electronic medical

records (EMR) can be used to reduce selection bias and improve medical practice.

We develop a method based on natural language processing to uncover interpretable

potential confounders from the clinical text. We validate our method by comparing the

hazard ratio (HR) from survival analysis with and without the confounders against the

results from established RCTs. We apply our method to four study cohorts built from

localized prostate and lung cancer datasets from the Stanford Cancer Institute Research

Database and show that our method adjusts the HR estimate towards the RCT results.

We further confirm that the uncovered terms can be interpreted by an oncologist as

potential confounders. This research more credible causal inference using data from

EMRs, offers a transparent way to improve the design of observational CER, and

could inform high-stakes medical decisions. Our method can also be applied to studies

within and beyond medicine to extract important information from observational data

to support decisions.
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1 Introduction

As the number of highly targeted cancer treatments increase, it is increasingly difficult for

oncologists to decide on optimal treatment practices. In the recent years, medicine has

seen the reversal of 146 standard medical practices [1], and many unanswered questions

remain on treatment decisions in oncology. The gold standard for assessing treatment

effects is randomized clinical trials (RCT). However, RCTs can be very expensive, time-

consuming, and limited by the lack of external validity [2, 3]. Hence, there has been a

growing interest in using observational data to compare and evaluate the effectiveness of

clinical interventions, also known as comparative effectiveness research (CER) [2].

Many studies have used large-scale observational registries such as the Surveillance, Epi-

demiology, and Ends Results (SEER) and National Cancer Data Base (NCDB) to perform

CER. However, such studies may be unreliable due to the systemic bias present in obser-

vational data and the presence of unmeasured confounders [1, 2, 4]. Moreover, population-

based CERs in oncology often also face small data challenges. Electronic medical records

(EMRs) are another source of rich observational information on patient demographics and

past medical history. We hypothesize that the more detailed unstructured data present in

EMRs can be harnessed to reduce confounding compared to prior CER studies.

We study how EMRs, especially clinical text, can be used to reduce selection bias in ob-

servational CER studies and better inform treatment decisions in oncology. A confounder

is a variable that is associated with both treatment assignment and the potential outcomes

a subject would have under different treatment regimes. In the presence of confounders, the

correlation between treatment assignment and outcomes cannot be interpreted as causal.

One way that confounding may arise is when patients are selected for a treatment group

on the basis of the severity of their illness. In such a case, failing to adjust for patient

severity can lead to selection bias when attempting to estimate causal effects. For exam-
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ple, surgery tends to be performed on younger or healthier patients; certain doctors or

institutions may prefer one treatment over another, and this creates confounding if those

doctors or institutions treat patients with systematically different severity. Studies based

on a small set of covariates tend not to capture the important confounders and result in

biased estimates [5, 6]. Observational studies are more reliable when we can better con-

trol for these confounders. While structured EMR , such as billing codes, can be used to

encode expert-curated patient characteristics, studies suggest that administrative claims

data may contain errors [7, 8] and expert-curated covariates may not capture all potential

confounding [5, 9]. EMR clinical text is a potential source of additional information about

factors that might relate to both treatment assignment and prognosis.

We propose an automated approach using natural language processing (NLP) to un-

cover interpretable potential confounders from the EMRs for treatment decisions. For

high-stake settings such as cancer treatment decisions, it is important to design models

that are interpretable for trust and understanding [10]. NLP can be used to process the

unstructured clinical notes and create covariates that supplement the traditional covari-

ates identified through expert opinion. We then augment our dataset with covariates that

impact both treatment assignment and patient outcomes, where attempting to estimate

causal effects while omitting such variables leads to biased estimates [11, 12]. Finally, we

use methods designed to estimate causal effects in observational studies with observed con-

founders to estimate treatment effects in our augmented data set. We show that controlling

for these confounders appears to reduce selection bias when compared against the results

from established RCTs and clinical judgement.

We apply our method to localized prostate and lung cancer patients. Based on cohorts

from established RCTs, we built four treatment groups for comparison. We uncovered inter-

pretable potential confounders from clinical text and validated the potential confounders
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against the results from the RCTs. Simple NLP techniques (e.g. lemmatization, entity

identification) were used to construct a bag-of-words representation of the frequently oc-

curring terms. A Lasso model [13] was then used to select the terms that are predictive of

both the treatment and survival outcome as potential confounders. Finally, we validated

our method by comparing the hazard ratio (HR) from survival analysis with and without

the confounders.

Our main contribution is presenting an approach to uncover interpretable potential con-

founders from clinical text. Existing work in observational causal inference rarely employs

unstructured data [14, 15, 16], and most NLP studies on clinical text focus on prediction or

classification settings [17, 18, 19, 8]. Our paper is the first to uncover interpretable poten-

tial confounders from clinical notes for causal analysis on cancer therapies, and one of the

few works that combines NLP and causal inference in a time-to-event setting. Our method

allows researchers to extract and control for confounders that are not typically available.

, This appears to be a useful step for future observational CER studies to help reduce

selection bias unique to that dataset. The research presented can help unlock the potential

of clinical notes to help clinicians understand current clinical practice and support future

medical decisions. 3.

1.1 Related Work

In the past decade, there has been a growing interest in using observational data for

clinical decision making and causal inference in oncology [2]. However, such studies are

often unreliable, and many observational studies have been refuted by RCTs soon after

[2, 4]. For example, Yeh et al. [6] performed a comparison of surgery vs. radiotherapy for

oropharynx cancer and suggested that surgery may be superior to radiation for quality of

life outcomes. A few years later, this claim was refuted by an RCT study Nichols et al.
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[20], which showed that radiation is in fact superior to surgery in terms of 1-year quality

of life scores. A similar example is seen with prostate cancer. In 2016, Wallis et al. [5]

showed through population-based studies that surgery is superior to radiation for early-

stage prostate cancer for overall and prostate- cancer specific survival; a few months later,

the finding was refuted by Hamdy et al. [21], which showed that surgery and radiation are

equivalent in terms of overall and prostate -cancer specific survival. Many other studies

have shown the fallibility of population CERs that rely on expert-curated features to draw

conclusions about treatment effects [2, 22].

Beyond clinical studies, there is a relatively large literature on performing causal infer-

ence from observational data. Various papers have explored how to correct for bias when

evaluating average treatment effect (ATE) from observational studies with propensity score

matching or weighting [23, 14]; see [24] for a review. There is also a growing amount of

literature that adapts machine learning models, such as random forest or regularized re-

gression, for doubly-robust ATE estimation in high-dimensional settings [25, 26, 27, 12, 28].

However, most of the methods do not include unstructured data.

Recent literature has shown the usefulness of conditioning on textual data to adjust for

confounding [29, 30, 31, 32]. Roberts et al. [30] proposes text matching to employ textual

data for causal inference. Mozer et al. [29] applies text matching to patient charts texts

for a medical procedure evaluation; however, they focus on continuous outcomes and rely

mostly on expert-curated terms from the clinical text. Veitch et al. [31] is another work that

employ unstructured data for causal inference; however, they rely on black-box models that

are not interpretable. Moreover, many existing causal inference methods are developed for

continuous outcomes and do not transfer easily to the time-to-event outcomes for survival

analysis used in oncology. Of the ones that perform causal inference on time-to-event

outcomes for medical applications [15, 16], we did not find any that include unstructured
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data in a systematic way. Austin [16] presents methods for using propensity scores to

reduce bias in observational studies with time-to-event outcomes. Our study leverages

some of the ideas and methods in this literature to develop our approach for identifying

and evaluating the potential confounders from the unstructured clinical notes. Keith et al.

[32] presents a review of the literature on using textual data to adjust for confounding.

Our paper contributes to this literature by addressing obstacles in using NLP methods to

remove confounding.

There is also a growing literature that seeks to better employ EMRs for clinical tasks.

Existing work has employed structured EMR data and unstructured clinical notes for

survival prediction and analysis [18, 33], predicting metastatic recurrence [17], clinical risk

prediction [34], and prediction of multiple medical events [19]. However, most current

work involving EMRs focuses on prediction tasks. In studies that include the unstructured

notes, most use deep learning to produce context-rich embedding representations of words

or documents [18, 19]. While these representations are highly accurate for prediction tasks,

they are often black-box and very difficult to interpret for causal insights. Our approach

differs in that we use simple NLP techniques (e.g. entity identification, bag-of-words) to

generate matrix representations that can be easily mapped to specific words and phrases.

This increases the interpretability of our method and allows us to explain our confounders

to clinicians.

Our study advances both the clinical and causal inference literature by using NLP to

perform causal inference on clinical text in time-to-event settings. We hope this will inform

clinical practice and improve patient outcomes.
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2 Results

We apply our methods to localized prostate and stage I non-small cell lung cancer (NSCLC)

patients and compare the results against established RCTs. We select these diseases due

to data availability and having established clinical RCTs for validation. After filtering

and assignment, we include 1,822 patients for prostate cancer, with 988 surgery patients,

385 radiation patients, and 449 active monitoring patients; the average follow-up time is

4.11 years. For stage I NSCLC, we include 749 patients, with 492 surgery patients and

257 radiation patients; the average follow-up time is 4.96 years. The patient characteristic

descriptions of the prostate cancer cohort are shown in Table 1 and the NSCLC cohort are

shown in Table 2. Please see Section 4.1 for more details on the patient selection process.

We use the findings from established RCTs and clinical judgement as a benchmark

for evaluating our results. For localized prostate cancer, Hamdy et al. [21] compared

active monitoring, radical prostatectomy, and external-beam radiotherapy. A total of 1,643

patients were included in the study, with 553 men assigned to surgery, 545 men assigned to

radiotherapy, and 545 men to active monitoring. They observed no significant difference

among the groups for prostate -cancer or all-cause mortality (P = 0.48 and P = 0.87

respectively). Similarly, a recent study showed that difference in treatment effects for

surgery vs. radiation observed from observational studies is entirely due to treatment

selection bias [9]. For stage I NSCLC, The Chang et al. [35] study is a pooled study

comparing stereotactic ablative radiotherapy (SABR) to surgery. A total of 58 patients

were included, with 31 patients assigned to SABR and 27 to surgery. The study observed

that SABR had slightly better overall survival than surgery (P = 0.037), but claims to be

consistent with the clinical judgement that surgery is equipoise to radiation.

Following the design of Hamdy et al. [21] and Chang et al. [35], we evaluate our results

for the following four treatment groups for an outcome of all-cause mortality:
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• surgery vs. radiation for prostate cancer

• surgery vs. monitoring for prostate cancer

• radiation vs. monitoring for prostate cancer

• surgery vs. radiation for stage I NSCLC

We do not analyze other treatment groups for lung cancer due to patient count constraints.

Our approach identifies covariates that are likely potential confounders in this partic-

ular dataset from the high-dimensional and high-noise EMR data. These covariates are

interpretable as they are represented by structured data or words from a bag-of-words

matrix. To evaluate the effectiveness of the potential confounders selected in the model,

we use these potential confounders to perform survival analysis for the treatment groups

for prostate and stage I NSCLC. We compare the results of various methods for time-to-

event analysis in terms of HR. Although we cannot know what the true HR is, we suggest

that using medical notes improves on the traditional covariates. We compare our results

against existing RCTs to evaluate how the confounders we have uncovered can help correct

for selection bias. The overall workflow is shown in Figure 1. Supplement A details the

covariates extracted from the structured data.
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Figure 1: Pictorial overview for uncovering potential confounders. A Data processing for
each patient. We preprocess and concatenate the structured and unstructured covariates
before applying our method. B Workflow for identifying how potential confounders affect
survival analysis for each treatment group. We uncover covariates that are predictive of
both the treatment and outcome as potential confounders. We then perform survival
analysis on different combinations of the selected covariates.
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Table 1: Characteristics of the localized prostate cancer patients.

Treatment Groups

Features Surgery (n = 988) Radiation (n = 385) Monitoring (n = 449)

Age, mean (std) 64.04 (7.8) 70.18 (7.6) 66.22 (8.2)

Race, no. (%)

white 709 (71.8%) 221 (57.4%) 292 (65.0%)

black 32 (3.2%) 15 (3.9%) 14 (3.1%)

asian 94 (9.5%) 41 (10.6%) 42 (9.4%)

unknown 153 (15.4%) 108 (28.1%) 101 (22.5%)

Ethnicity, no. (%)

hispanic 71 (7.1%) 20 (5.2%) 23 (5.1%)

non-hispanic 890 (90.1%) 348 (90.4%) 393 (87.5%)

unknown 27 (2.7%) 17 (4.4%)) 33 (7.3%)

Clinical Stage, no. (%)

stage I 219 (22.2%) 36 (9.4%) 227 (50.6%)

stage II 750 (75.9%) 289 (75.1%) 217 (48.3%)

stage III 12 (1.2%) 38 (9.9%) 3 (0.7%)

stage IV 7 (0.7%) 22 (5.7%) 2 (0.4%)

Tumor Grade, no. (%)

grade 1 66 (66.8%) 33 (8.6%) 157 ((35.0%)

grade 2 429 (43.4%) 132 (34.3%) 205 (45.7%)

grade 3 474 (48.0%) 208 (54.0%) 62 (13.8%)

grade 4 3 (0.3%) 2 (0.5%) 0 (0%)

unknown 16 (1.6%) 10 (2.6%) 25 (5.6%)

No. notes/patient, mean (std) 24.96 (44.4) 53.93 (105.7) 54.48 (93.4)

Days of survival, mean (std) 1,564.90 (979.4) 1424.76 (1,031.6) 1,403.72 (921.2)

Death, no. (%) 70 (7.1%) 19 (4.9%) 17 (3.8%)

Diagnosis Year: 2008-2017; Avg. follow up: 4.11 years
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Table 2: Characteristics of the stage I lung cancer patients.

Treatment Groups

Features Surgery (n = 484) Radiation (n = 224)

Age, mean (std) 68.05 (10.7) 74.60 (9.1)

Gender, no. (%)

female 299 (62.0%) 87 (41.2%)

male 185 (38.0%) 137 (58.8%)

Race, no. (%)

white 293 (60.8%) 152 (66.5%)

black 12 (2.2%) 5 (3.5%)

asian and pacific islander 99 (20.1%) 18 (9.7%)

unknown 80 (16.9%) 49 (20.2%)

Ethnicity, no. (%)

hispanic 23 (4.9%) 10 (3.9%)

non-hispanic 411 (84.3%) 178 (81.7%)

unknown 50 (10.8%) 36 (14.4%)

No. notes/patient, mean (std) 57.49 (101.2) 57.73 (134.9)

Days of survival, mean (std) 2,060.13 (1,207.5) 1,350.29 (914.1)

Death, no. (%) 120 (24.8%) 126 (53.3%)

Diagnosis Year: 2000-2017; Avg. follow up: 4.96 years
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2.1 Potential Confounders

We show that our methods uncover terms that are predictive of both the treatment and

survival outcome. Hence, these are potential confounders that should be controlled for in

observational CERs to reduce selection bias. Please see Supplement C for a discussion on

the structures of potential confounding our method can capture.

We select the intersection covariates from our treatment and outcome prediction models

as the potential confounders. We base this idea on the selection of union variables to

reduce confounding when performing causal inference on observational data in the case

of continuous outcomes [12]. However, in survival analysis, it is recommended that the

covariates analyzed be constrained by the statistical 1 in 10/20 rule of thumb with respect

to the the event count [36, 37]. In our high-dimensional setting, the union of covariates that

are predictive of treatment and outcome yield too many potential confounders relative to

the sample size. Hence, we use the intersect as a heuristic to focus on the most important

confounders.

In Figure 2, we illustrate the unpenalized coefficients of covariates from two models,

the treatment assignment model and the survival outcome model. For each covariate, the

x-axis plots the coefficient from the treatment prediction model while the y-axis plots the

coefficient from the survival outcome model. Each covariate is labeled by the text next to

it. The intersection covariates, intersect, are shown in blue; these are the covariates that

have strong effects in both models. For the structured covariates, we illustrate in black the

coefficients for the covariates that were not selected; these coefficients are closer to at least

one of the axes in the figure. We do not illustrate the coefficients for unstructured covariates

that are not selected, as there are a large number of these covariates. The axes are labeled to

indicate which treatment the coefficient predicts and whether the coefficient is indicative of

a good or bad survival prognosis. For example, in the treatment model, patients with a high
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“bladder” word-occurrence have a higher likelihood of receiving surgery; in the outcome

model, patients with a high “bladder” occurrence have a lower likelihood of survival.

In Supplement E, we show the R2 correlation among all the selected covariates for each

treatment group.

 

   
 

   

a b 

c d 

Figure 2: For each treatment group, we show the unpenalized coefficients for the struct+intersect
covariates. Blue text indicates the intersect covariates that have been selected as potential con-
founders by our method from the text; the prefix text: has been omitted. Black text indicates
the structured covariates that have not been selected; the prefix struct: has been omitted. The
covariate patient age has been shorthanded as pat age. For the treatment model, these are the
coefficients to a linear model. For the survival outcome model, these are the β for the Cox-PH
model. The dotted lines are the axis, denote a coefficient value of 0.
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2.2 Evaluation of Potential Confounders

We evaluate these potential confounders by comparing the results on 3 covariate combina-

tions:

• structured: Using only the structured covariates. We use this as a baseline because

these are covariates that are typically used in retrospective oncology studies and are

readily available in the structured data [5].

• intersect: Using only the intersection covariates identified as confounders.

• struct+intersect: Using the union of the structured and intersection variables.

We then perform survival analysis using univariate Cox proportional hazard models (Cox-

PH) with propensity score matching (matching), univariate Cox-PH model with inverse

propensity score weighting (IPTW), and multivariate Cox-PH model with inverse propen-

sity score weighting (multi.coxph). In Figure 3, we show the hazard ratio (HR) of

the effect of treatment for each study cohort when the selected covariates are included in

analysis. An HR below 1 indicates that patients with the second treatment are more likely

to survive than those with the first treatments. An HR above 1 indicates the opposite, and

an HR equal to 1 indicates that the two treatments are equipose. For each HR estimate,

we also show the 95% confidence interval (CI). Please see Section 4.5 for more details on

the methods.

We observe that with the additional covariates, we are able to shift the estimate of

the HR towards the direction of the RCT for an outcome of all-cause mortality. We also

compare the covariate-specific HR of each of the selected covariates in terms of univariate

and multivariate Cox-PH analysis for an all-cause mortality outcome in Tables 3-6.

In Figure 3A and Table 3, we show the results with surgery vs. radiation for prostate

cancer. The RCT reports no significant difference between surgery vs. radiation for local-
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ized prostate cancer [21]. With structured, we observe a significant effect that radiation is

superior to surgery, a result that disagrees with most retrospective studies [5]. We observe

a significant shift in the HR towards equipoise with the additional identified confounders

for intersection and struct+intersect. For structured, we observe an HR of 2.51 with 95% CI

(2.39-4.55) and p-value of 0.002 with multi.coxph. For struct+intersect, we estimate an HR

of 1.54 with 95% CI (0.78-3.03) and p-value of 0.214 with multi.coxph. We shift the HR

point estimate by 0.97, or 38.6%, towards equipose.

In Figure 3B and Table 4, we show the results of surgery vs. active monitoring for

prostate cancer. Hamdy et al. [21], the RCT, reports the HR for surgery vs. active

monitoring as 0.93 with 95% CI (0.65, 1.35) and p-value of 0.92. With structured, we again

have a significant effect that active monitoring is superior to surgery; this disagrees with

most retrospective studies [5] and Hamdy et al. [21]. We again observe a significant shift

in the HR towards equipoise with the additional identified confounders. For structured, we

observe an HR of 2.71 with 95% CI (1.55-4.75) and p-value < 0.001 with multi.coxph. For

struct+intersect, we estimate an HR of 1.10 with 95% CI (0.55-2.21) and p-value of 0.781

with multi.coxph. We shift the HR point estimate by 1.61, or 59.1%, towards equipose.

In Figure 3C and Table 5, we show the results of radiation vs. active monitoring for

prostate cancer. We do not see as significant a shift with radiation vs. active monitoring.

Hamdy et al. [21] records the HR for radiation vs. active monitoring as 0.94 with 95% CI

of (0.65, 1.36) and p-value of 0.92. We observe that the matching results are not very

far from the RCT results matching estimated the HR closest to the RCT results when

compared against IPTW and multi.coxph. All results with intersect and struct+intersect

shift the HR estimate slightly towards equipose, with the most shift of 0.32 by intersect and

IPTW; this is closely followed by a shift of 0.20, or 45.5%, with intersect and multi.coxph.

We suspect this While the adjusted results are not as close to the RCT results as compared
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to Figures 3a-b, the HR estimate are all shifted towards the RCT results in terms of bias

reduction for each of the data and method combination. We suspect the less significant

shift may be due to the smaller dataset available for radiation vs. active monitoring or the

confounding not being observable within the text.

In Figure 3D and Table 6, we show the results with surgery vs. radiation for stage I

NSCLC. With structured, we observe a significant effect that surgery is superior to radia-

tion. The results from Chang et al. [35] and clinical judgement tells us that surgery and

radiation should be about equipose for stage I NSCLC. The shift is not as significant as

with prostate cancer, but we also note that the established clinical standard for lung cancer

is not as well studied. We do observe a more significant shift with multi.coxph there is a

slight shift with IPTW and matching. For structured, we observe an HR of 0.39 with 95%

CI (0.30-0.51) and p-value < 0.001 with multi.coxph. For struct+intersect, we estimate an

HR of 0.54 with 95% CI (0.40-0.53) and p-value < 0.001 with multi.coxph. We shift the HR

point estimate by 0.15 towards equipose. We suspect the small changes with IPTW and

matching are While the adjusted results are not as close to the RCT results as compared to

Figures 3a-b, the HR estimates are all shifted towards equipose in terms of bias reduction

for each combination. We suspect the less significant shift is again due to the even smaller

data size of stage I NSCLC. The doubly-robust method of multi.coxph seem to perform

better under these settings.

Overall, our methods uncover several potential confounders that can reduce selection

bias in observational data. Although our method cannot uncover all potential confounders,

we are able to uncover confounders that are not usually included in expert-selected covari-

ates. Supplementary analysis of propensity scores and covariate balance plots for each

analysis are seen in Supplement D.

16

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 9, 2021. ; https://doi.org/10.1101/2021.02.03.21251034doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.03.21251034


17

 
 

  
 
 

 

a b 

c d 

Surgery better Radiation better Surgery better Monitoring better 

Radiation better Monitoring better Surgery better 
0.6 

Figure 3: Forest plots of each of the comparison groups. The left-hand label is shown as: HR
(95% CI), p-value | ∆ HR. The ∆ HR measure is the difference of the current HR estimate and
the baseline, structured, HR estimate. For surgery vs. active monitoring and radiation vs. active
monitoring for prostate cancer, we’ve included the exact results from the RCT in red for comparison.
For the remaining cohorts, clinical expertise suggest equipose between the treatments. We see that
the inclusion of our potential confounders shift the HR point estimate in the direction of the RCT
and reduces the selection bias. The blue labels below each graph indicate which treatment is better
in terms of HR comparison. For D, radiation better is not displayed because the HR value is not
shifted beyond 1.0, the direction of radiation better.
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2.3 Potential Confounder Interpretation

We show that the potential confounders we have uncovered are interpretable through clin-

ical expertise. We examine the effect on survival for each selected covariate in term of

univariate and multivariate survival analysis with a Cox-PH model. In univariate analysis,

a single covariate is regressed on the survival outcome and describes the survival with re-

spect to a single covariate. In multivariate analysis, all the selected covariates are regressed

on the survival outcome and describe each covariate’s effect on survival while adjusting for

the impact of all selected covariates. For a particular variable, an HR below 1 indicates

that the covariate is a positive predictor of survival, an HR above 1 indicates a negative

predictor of survival, and an HR equal to 1 means that the variable does not seem to effect

survival.

2.3.1 Prostate Cancer

For surgery vs. radiation and surgery vs. active monitoring, patient age, bladder, and

urothelial are chosen as intersection covariates. Moreover, they are also shown to be

significant through both univariate and multivariate covariate analysis in Tables 3 and 4.

Patient age is a known confounder in treatment decision and survival outcomes. Older

patients are more likely to receive radiation due to surgery risk. However, older pa-

tients also have higher mortality. In Figure 2a-c, we observe that patients with higher

struct:patient age, i.e. older patients, are more likely to receive radiation and a bad prog-

nosis.

We hypothesize that text:bladder and text:urothelial are identified because prostate

cancer patients often have bladder symptom issues and can also have urothelial cancer.

Most retrospective prostate cancer studies have not excluded patients with early stage

bladder cancer [5]. Examples of text:bladder in the clinical notes are “he notes incomplete
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bladder emptying”, “evidence of benign prostatic hyperplasia and chronic bladder outlet

obstruction”, and “diagnosis of bladder cancer”. Examples of text:urothelial in the notes

are “pathology showed high grade urothelial carcinoma with muscle present and not defini-

tively involved”, “it was read as a high grade urothelial cancer which involved the stroma

of the prostate as well as the bladder”. Patients with bladder cancer or bladder issues are

more likely to get surgery than radiation. Radiation does not work well for bladder cancer.

Patients with bladder problems may prefer surgery because radiation can irritate the blad-

der and cause urinary problems. However, these are also patients with higher mortality

and more health issues. In Figure 2a-b, we observe that text:bladder and text:urothelial

are more common in patients who received surgery and had a bad prognosis.

Moreover, for this particular dataset, we note that the confounding appear to be ob-

servable. The bias of surgery being worse than radiation and monitoring is due to a group

of patients who are diagnosed with prostate cancer through a resection for bladder cancer

or other bladder issues. When a patient with bladder cancer has a cystoprostatectomy

in which the bladder and prostate are both removed, a pathologist can sometimes find a

prostate tumor in the pathology specimen. Bladder cancer patients tend to be older, have

more medical issues, and a higher mortality rate. However, these patients often have low

clinical stage for prostate cancer. The terms bladder and urothelial describe this group of

patients. Our method is able to capture some characteristics of this group and use this to

reduce selection bias.

For radiation vs. active monitoring, we do not observe confounders that present a

significant shift in treatment HR in Table 5. It can be that the confounding here is not

as easily observable or our method is unable to identify it. We can identify interesting

potential confounders, such as text:resident. From Figure 2c, we observe that text:resident

is more common in patients who received radiation and had a bad prognosis. This term
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likely refers to both resident physicians and the patient being a resident of a long-term

care facility or skilled nursing facility. Both uses of the term could reduce survival time:

inpatients at teaching hospitals have much of their care delivered by resident physicians, and

frequent inpatient stays or nursing facility residency could both indicate a sicker patient.

2.3.2 Lung Cancer

We examine Table 6 for the intersection covariates through univariate and multivariate

analysis. We observe that some of the significant terms are patient age, male, race api,

diagnosis year, alk, left.low, and severe.

We note that age, gender, race, and diagnosis year are known confounders for treatment

decision and outcome.

The covariate alk points to the ALK mutation for NSCLC. About 5% of NSCLCs have

a rearrangement in a gene called ALK; the ALK gene rearrangement produces an abnormal

ALK protein that causes the cells to grow and spread. This change is often seen in non-

smokers (or light smokers) who are younger and who have the adenocarcinoma subtype

of NSCLC [38]. It’s been observed that patients with the ALK mutation have worse

disease-free survival, citing higher rates of recurrence and metastasis [38]. Alternatively,

we hypothesize that alk is significant because the ALK mutation is mutually exclusive from

the EGFR mutation [39]. The EGFR mutation is often present in asian patients and EGFR

patients typically have better survival. Hence, the significance of alk can be related to the

absence of the EGFR mutation. In Figure 2d, we observe that text:alk is more common

in patients who received radiation and had a bad prognosis.

The covariate left.low can point to NSCLC on the lower left node of the lung. Studies

have observed that lung cancer on the lower lobe or lower left lobe has worse survival [40,

41]. This can also be related to the absence of the EGFR mutation, since EGFR mutation
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occur less frequently in the lower lobe [40]. In Figure 2d, we observe that text:left.low is

also more common in patients who received radiation and had a bad prognosis.

The covariate text:nipple can indicate a history of breast cancer. Studies have shown

that patients with a history of breast cancer are diagnosed with lower stages of NSCLC

and show better prognosis when compared to women with first NSCLC, perhaps due to

heightened surveillance compared to the general population [42]. In Figure 2d, we observe

that text:nipple is more common in patients who received surgery and had a good prognosis;

both effects have also been observed in Milano et al. [42].

The covariate text:sponge can refer to sponges used for surgical preparations. Sponge

is commonly used in surgery and can be an indication that the patient has some history

of receiving surgery. Patients who receive surgery tend to be healthier and have better

survival. In Figure 2d, text:sponge is more common in patients who received surgery and

had a good prognosis.

The covariate severe and text:rib could be pointing to a severe conditions related to

lung and other problems that indicate poor overall health and performance status, which

has been shown to be related to a patient’s survival outcomes [43]. Examples of text:severe

include phrases such as “severe pulmonary hypertension”, “severe COPD”, or “severe em-

physema”. Examples of text:rib include phrases such as “rib fractures” or “rib shadows”.

In Figure 2d, we observe that both text:severe and text:rib are more common in patients

who received radiation and had a bad prognosis. Similarly, we also observe other terms that

could describe the severity of lung cancer - such as squamous.cell text:pulmonary.nodule, or

text:silhouette - or overall health levels - textdsalert, attention. text:cyst, or text:discomfort

Overall, we are able to uncover some potential confounders that are easy to interpret

and capture useful clinical insights.
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Table 3: Univariate and multivariate covariate-specific HR for surgery vs. radiation for
prostate cancer. The ∗ denotes intersection terms identified by our method. The lower
block of covariates represent terms extracted from clinical notes.

Univariate analysis Multivariate analysis

Covariates HR 95% CI p-value HR 95% CI p-value

W.surgery 1.27 [0.77, 2.1] 0.352 1.09 [0.59, 2] 0.777

struct:patient age* 594.88 [87, 4.1e+03] <0.001 35.96 [3.5, 3.7e+02] 0.003

struct:race white 0.92 [0.44, 1.9] 0.822 0.65 [0.22, 1.9] 0.439

struct:race api 0.63 [0.18, 2.2] 0.467 0.67 [0.14, 3.3] 0.622

struct:race black 1.63 [0.33, 8.1] 0.551 4.04 [0.64, 25] 0.137

struct:hispanic 0.85 [0.2, 3.6] 0.831 1.52 [0.33, 7] 0.593

struct:clinical stage 0.30 [0.042, 2.2] 0.237 1.02 [0.14, 7.4] 0.987

struct:tumor grade 0.05 [0.0013, 2] 0.111 0.10 [0.00038, 24] 0.406

struct:grade unknown 0.55 [0.028, 11] 0.698 0.99 [0.0029, 3.4e+02] 0.996

struct:diagnosis year 0.12 [0.024, 0.57] 0.008 0.17 [0.025, 1.2] 0.075

text:bladder* 207.51 [79, 5.4e+02] <0.001 35.95 [9.3, 1.4e+02] <0.001

text:urothelial* 1919.54 [4.2e+02, 8.7e+03] <0.001 44.07 [4.4, 4.4e+02] 0.001

HR = Hazard Ratio; CI = confidence interval; *: intersection terms
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Table 4: Univariate and multivariate covariate-specific HR for surgery vs. active monitor-
ing for prostate cancer. The ∗ denotes intersection terms identified by our method. The
lower block of covariates represent terms extracted from clinical notes.

Univariate analysis Multivariate analysis

Covariates HR 95% CI p-value HR 95% CI p-value

W.surgery 1.67 [0.99, 2.8] 0.057 1.02 [0.55, 1.9] 0.957

struct:patient age* 3669.74 [5.3e+02, 2.5e+04] <0.001 143.94 [11, 1.9e+03] <0.001

struct:race white 0.87 [0.41, 1.8] 0.709 0.68 [0.23, 2] 0.478

struct:race api 0.59 [0.15, 2.3] 0.443 0.81 [0.16, 4.1] 0.799

struct:race black 2.04 [0.41, 10] 0.384 5.16 [0.82, 32] 0.080

struct:hispanic 1.09 [0.29, 4.1] 0.898 1.68 [0.41, 6.8] 0.471

struct:clinical stage 2.58 [0.31, 21] 0.378 3.75 [0.35, 40] 0.275

struct:tumor grade 0.22 [0.014, 3.7] 0.296 2.37 [0.0084, 6.6e+02] 0.764

struct:grade unknown 0.06 [0.00094, 4.2] 0.198 0.02 [2.5e-05, 14] 0.235

struct:diagnosis year 0.12 [0.027, 0.55] 0.006 0.50 [0.073, 3.4] 0.483

text:bladder* 160.34 [65, 3.9e+02] <0.001 24.17 [6.6, 89] <0.001

text:urothelial* 2178.75 [5e+02, 9.6e+03] <0.001 68.15 [7.4, 6.3e+02] <0.001

HR = Hazard Ratio; CI = confidence interval; *: intersection terms
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Table 5: Univariate and multivariate covariate-specific HR for radiation vs. active moni-
toring for prostate cancer. The ∗ denotes intersection terms identified by our method. The
lower block of covariates represent terms extracted from clinical notes.

Univariate analysis Multivariate analysis

Covariates HR 95% CI p-value HR 95% CI p-value

W.radiation 1.22 [0.63, 2.4] 0.551 0.62 [0.24, 1.6] 0.316

struct:patient age* 265.19 [9.1, 7.8e+03] 0.001 275.03 [3.7, 2.1e+04] 0.011

struct:race white 0.43 [0.15, 1.3] 0.129 0.39 [0.099, 1.5] 0.170

struct:race api 1.38 [0.29, 6.7] 0.687 0.62 [0.09, 4.3] 0.626

struct:race black 1.69 [0.18, 16] 0.646 1.90 [0.19, 19] 0.582

struct:hispanic 0.38 [0.014, 11] 0.572 0.39 [0.016, 9.7] 0.567

struct:clinical stage 2.42 [0.2, 30] 0.491 1.12 [0.056, 22] 0.939

struct:tumor grade 0.89 [0.034, 23] 0.942 533.75 [0.015, 1.9e+07] 0.240

struct:grade unknown 0.12 [0.0017, 8.9] 0.337 0.00 [3e-07, 32] 0.220

struct:diagnosis year 0.69 [0.053, 9.1] 0.781 4.96 [0.1, 2.4e+02] 0.417

text:carotid* 44.60 [4.1, 4.9e+02] 0.002 9.63 [2.1, 43] 0.003

text:resident* 185839.25 [80, 4.3e+08] 0.002 1288062.91 [1e+03, 1.6e+09] <0.001

HR = Hazard Ratio; CI = confidence interval; *: intersection terms
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Table 6: Univariate and multivariate covariate-specific HR for surgery vs. radiation for
stage I NSCLC. The ∗ denotes intersection terms identified by our method. The lower
block of covariates represent terms extracted from clinical notes.

Univariate analysis Multivariate analysis

Covariates HR 95% CI p-value HR 95% CI p-value

struct:W.surgery 0.309 [0.24, 0.4] <0.001 0.545 [0.41, 0.72] <0.001

struct:pat age 52.9 [17, 1.6e+02] <0.001 14.6 [4.8, 44] <0.001

struct:male 3.07 [1.8, 5.1] <0.001 1.92 [1.1, 3.4] 0.023

struct:race white 0.842 [0.53, 1.4] 0.476 0.495 [0.28, 0.87] 0.015

struct:race api 0.0557 [0.019, 0.17] <0.001 0.0674 [0.021, 0.22] <0.001

struct:race black 2.03 [0.62, 6.7] 0.245 1.87 [0.57, 6.1] 0.298

struct:hispanic 0.664 [0.19, 2.3] 0.514 0.331 [0.088, 1.2] 0.101

struct:diagnosis year 0.0166 [0.007, 0.039] <0.001 0.0421 [0.014, 0.13] <0.001

text:alert 9.46e-12 [3.6e-16, 2.5e-07] <0.001 0.00224 [3e-08, 1.7e+02] 0.287

text:alk 1.17e+04 [38, 3.7e+06] 0.001 4.67e+04 [9.3e+02, 2.3e+06] <0.001

text:appearance 5.46e-09 [2.6e-12, 1.1e-05] <0.001 0.00694 [7.6e-06, 6.4] 0.153

text:attention 1.03e-12 [4.6e-20, 2.3e-05] 0.001 0.00238 [1.2e-09, 4.7e+03] 0.414

text:feel 6.64e-10 [5.7e-16, 0.00077] 0.003 1.27e-05 [1.2e-10, 1.4] 0.057

text:left.low 29.1 [5.2, 1.6e+02] <0.001 12.5 [2.1, 76] 0.006

text:nipple 2.57e-09 [1.6e-15, 0.0041] 0.007 4.2e-05 [1.5e-09, 1.2] 0.054

text:rib 688 [40, 1.2e+04] <0.001 28.1 [1.8, 4.4e+02] 0.017

text:severe 601 [56, 6.5e+03] <0.001 58.3 [9.4, 3.6e+02] <0.001

text:sponge 2.04e-07 [3.3e-11, 0.0013] <0.001 0.0181 [3.7e-05, 8.9] 0.205

text:squamous.cell 94.8 [16, 5.6e+02] <0.001 7.61 [1.1, 53] 0.041

text:venous 0.0464 [0.00089, 2.4] 0.128 0.0523 [0.00081, 3.4] 0.165

HR = Hazard Ratio; CI = confidence interval; *: intersection terms
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3 Discussion

We have demonstrated how causal inference methods can be used to draw more reliable

conclusions from population-based studies. Our paper shows that 1) clinical notes, or

unstructured data, can be an important source for uncovering confounders, and 2) current

clinical tools can be augmented with machine learning methods to provide better decision

support. Furthermore, our experimental framework can be easily adapted to use textual

data to reduce selection bias in retrospective studies more generally.

Our method can be used to improve clinical practice. Due to the simplicity of the

machine learning tools employed, our method can be easily implemented as an additional

step in the design of observational CER studies. Our results also show that the method is

generalizable to different types of cancer and for various types of study cohort comparisons.

With the continued digitization of clinical notes and the increasing access to EMRs, we

recommend this as an essential step for any researcher seeking to draw clinical insights

from observational data. The terms uncovered with our method can not only be used

to improve observational CERs, but also be used to generate interpretable insights about

current clinical practice. The uncovering of relevant information and subsequent insights

can then be used to inform high-stakes medical decisions.

We believe that our work is the first to explore the potential of including unstructured

clinical notes to reduce selection bias in oncology settings. We are also one of the first

works to incorporate unstructured data into causal inference estimators and Cox-PH mod-

els. Although our method has been developed to address a specific problem in oncology

and applied in the clinical setting, it can also be easily adapted for application in any

observational study that seeks to incorporate unstructured text. We propose our method

as an automated selection procedure that can be used to supplement expert opinion when

uncovering potential confounders for a particular observational study population. There is
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much work to be done in using NLP and unstructured text for causal inference. Our work

present a simple and flexible way to generate interpretable causal insights from text of any

sort.

Our study also has several limitations. First, we use simple NLP methods to process

the clinical notes and extract the top 500 or 1000 features for variable selection. In the

process, much information in the text nodes is discarded and the sequence of past medical

events are not taken into account. We choose this setup due to the the small sample

size of oncology study cohorts, which makes it difficult to train more complicated models

for textual processing. In theory, the more work that is placed into the clinical notes

preprocessing and the higher quality of the features generated from these notes, the more

informative the uncovered potential confounders will be. For future work, we hope to

explore how other NLP techniques, such as topic modeling or clustering, can be used to

build even higher quality features from the unstructured text. There are also an increasing

number of deep learning models that can be used to identify interpretable insights [19].

We are interested in how these deep learning methods can be applied to generate causal

insights on another study population with larger sample size.

Fourth, we rely on the proportional hazard assumption for our Cox-PH models. In

cases of many covariates, the assumption may be violated. We feel the simplicity and

interpretability of the model by practitioners outweigh the increased complexity. For EMR

datasets with many covariates, the assumption is often used and does not seem to present

a practical issue [33]. Future work could explore alternative models that do not rely on the

assumption [44].

Fifth, more work can be done to mitigate immortal time bias in our HR estimates. We

discuss our approach in Section 4.2. An alternative method to address this problem would

be to use a time-dependent Cox-PH model [45].
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Eighth,

Third, our approach of selecting intersection covariates is an empirical approach de-

signed for uncovering the most valuable potential confounders. While our approach

seemed to work well empirically in this study, more experimentation and analysis can be

done to help verify its validity in the future.

Sixth,

Seventh,

[46]. [47].

C

Finally, the validity of causal inference models cannot be determined without prospec-

tive experimental data. Therefore, the uncovered confounders and estimated HR can only

be validated by clinicians. We are identifying potential candidates for the bias and then

evaluating these candidates of bias against RCTs.

Many challenges still remain for employing unstructured data for causal inference analy-

sis and medical settings. We hope this work interests both clinical practitioners augmenting

existing clinical support tools and researchers using textual data to reduce confounding in

observational data. We hope our workflow, problem framing, and experimental design can

serve as such a sandbox for testing more complex algorithms or adapting to other applica-

tion areas. Ultimately, we hope this research will find causal information in clinical notes

and provide a transparent way for machine learning to inform medical decision making.
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4 Methods

4.1 Dataset

With approval of the Stanford Institutional Review Board (IRB), we curate a dataset

of non-metastatic prostate and lung cancer patients from the Stanford Cancer Institute

Research Database (SCIRDB). The database includes patients seen in the Stanford Health

Care (SHC) system from 2008 to 2019 for prostate cancer and 2000 to 2019 for lung cancer.

SHC clinical sites include one academic hospital, one freestanding cancer center, and several

outpatient clinics. From SCIRDB, we pull a total of 3,638 prostate cancer patients with

552,009 clinical notes and 3,274 non-small cell lung cancer (NSCLC) patients with 648,505

clinical notes. The clinical notes include progress notes, letters, discharge summaries,

emergency department notes, history and physical notes, and treatment planning notes.

For each patient, we also pull the structured EMR and data from the inpatient billing

system. From the California Cancer Registry (CCR), we pull the available initial treatment

information, cancer staging, tumor description, date of diagnosis, date of death, and date

of last follow-up for these selected patients. For NSCLC, we also pull the recorded Epic

cancer staging information.

4.2 Study Cohort

We build our study cohorts from SCIRDB with reference to existing observational study

principles and clinical expertise. We try our best to select patients for each treatment

group built from the EMRs to match the RCTs criteria.

For each patient, we combine all treatments with the same Diagnosis ID in the CCR

as the initial line of treatment. For patients with multiple diagnosis id, we keep the first

record of treatment. For prostate cancer, patients without a recorded treatment are labeled
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as active monitoring. To avoid explicit revelation of the treatment choice, we only include

notes more than 2 months before treatment start date for prostate cancer and 1 month for

NSCLC. We rely on domain expertise to determine the 1 or 2-month pre-treatment cutoffs.

Lung cancer patients typically have higher mortality and tend to start treatment pretty

quickly. For prostate cancer, patients progress more slowly and get second opinions before

making a treatment decision. We then select for patients with at least one note before the

specified time. We select only patients who survived at least 6 months past their date of

diagnosis to mitigate immortal-time bias [45]. Because we extract only initial treatments

(rather than treatments for cancer recurrence) as recorded in SEER, most of the treatments

are administered within 6 months of the diagnosis date [48]. This is similar to the setup for

traditional landmark analysis [45]. To ensure the proportional hazard condition, patients

who are still living are censored at time of last follow-up [49]. The patient filtering and

cohort selection process are shown in Figure 4.

For patients with unknown clinical stage but known pathological stage, we impute the

clinical stage by training a clinical stage classification model using the pathological stage

and other patient information. Pathological stage is usually a little higher than clinical

stage due to the staging based on biopsy samples instead of imaging; hence, it is inaccurate

to group them together. Clinical stage is more frequently used for similar observational

studies [21, 35] and it is more rigorous to impute the missing clinical stage with a model

trained on the pathological stage and other relevant covariates. We train the clinical stage

imputation model with patient age, pathological stage, diagnosis year, and tumor grade. For

NSCLC, tumor grade is not included due to missing information. For both prostate and

NSCLC, we train and validate a random forest model [50, 51] on patients with both clinical

and pathological stage available. The imputed stages are used as the clinical stage for those

patients. For patients with both clinical and pathological stage missing, we are able to fill
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in some through clinical chart reviews.

We assign patients to the treatment groups based on the initial treatment decision to

capture the intent to treat rather than the actual treatments administered. We assign

patients with only surgery records into the surgery group and patients with only radiation

records into the radiation group. For patients with both radiation and surgery, patients

who received surgery first are assigned to the surgery group and patients who received

radiation first to the radiation group. For prostate cancer, patients with no recorded

treatment are assigned to the active monitoring group. For NSCLC, only patients with

clinical stage I are included.

3,638 prostate cancer patients 
from SCIRDB

3,544 patients with 
treatment record in CCR

2,012 patients with ≥1 note 
2 months before treatment

1,877 patients survived ≥6 months past diagnosis

988 surgery 
patients

385 radiation 
patients

449 active 
monitoring patients

1,822 patients with treatment of interest

(a) Prostate Cancer

3,273 non-small cell lung cancer 
patients from SCIRDB

2,890 patients with treatment record in CCR

1,762 patients with ≥1 note 
1 month before treatment

800 stage I patients

484 surgery patients

758 patients survived ≥6 months past diagnosis

224 radiation patients

708 patients with treatment of interest

(b) Lung Cancer

Figure 4: Patient cohort selection process for prostate and lung cancer patients.

4.3 Data Processing and Representation

We build the covariates used for uncovering confounders through the process shown in

Figure 1A. We compile the data from SCIRDB, CCR, and Epic for each patient.

We include age, race, ethnicity, clinical stage, and diagnosis year as part of the struc-

tured data. For prostate cancer, we also include tumor grade For NSCLC, we also include
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gender. Based on age range categories used in Li et al. [52], we form the categorical vari-

able patient age by splitting age into ranges of ≤ 49 years-old, 5-year buckets from 50− 84

years-old, and ≥ 85 years-old. Race and ethnicity are encoded as one-hot vectors, with

each feature indicating one race or ethnicity. Race is combined based on what is done in

Li et al. [52]. We select these structured covariates because they are commonly accepted

by clinicians as potential confounders and often included in CER studies [5]. For race,

race unknown is not included as a covariate. For ethnicity, only hispanic is included as a

covariate. For tumor grade, patients with unknown grade are imputed with the median

grade value. The indicator variable grade unknown is added to indicate which patients have

been imputed. The covariates tumor grade and grade unknown are not included for NSCLC

due to missing information of tumor grade and clinical judgement. In the end, we have 9

structured covariates for prostate cancer and 7 structured covariates for NSCLC. [7, 8].

We build word frequency representations of the clinical notes for the unstructured co-

variates. For each patient, we compile notes within the specified time (i.e. 2 months prior

to treatment start date for prostate cancer and 1 month prior for NSCLC). We only use

notes from before treatment so that we are not predicting survival outcome with infor-

mation unavailable at the time of treatment decision. The different time windows for the

two diseases was selected as NSCLC treatment generally starts more quickly than prostate

cancer treatment due to the more rapidly progressing nature of the cancer. The notes are

segmented based on clinical field labels (e.g. “IMPRESSION:”, “HISTORY:”), tab spaces,

NLTK sentence tokenization [53]. To remove noise, we remove clinical field labels and

two sentences from the beginning and end of each document. We also remove sentences

with common locations (e.g. “Stanford Medical Center”, “Palo Alto”) and medical doctor

names (e.g. “xx xx, M.D.”) as these are often prefix or suffix to note documents. To avoid

including conditions patients do not have, we remove sentences if they contain less than 15
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words including a negation term (i.e. “no”, “denies”, “does not”, “none”). For example,

this prevents us from extracting “smoking” as a covariates from “No history of smoking.”

We then identify biomedical entities from the preprocessed clinical notes with scispaCy

[54]. scispaCy is a spaCy [55] based model for processing biomedical, scientific, and clini-

cal text. The scispaCy models identifies a list of all the entities in the text that exist in a

biomedical dictionary, such as the Unified Medical Language System [56]. We then lemma-

tize and combine all biomedical entities identified from the sentences for each patient into

a single document. To further remove noise, we remove stop words using a combination

of the NLTK stopwords [53] and data-specific stopwords such as medical units (e.g., “lb”,

“oz”, “mmhg”), time terms (e.g., “months”, “days”), and medical or Stanford specific

terms (e.g., “stanford”, “patient”, “doctor”) that are very common but irrelevant to the

task at hand. We also create a dictionary of synonyms in the dataset and use the dictionary

to combine these words. The dictionary includes lexical variations that are not reduced

to the same root during lemmatization (e.g. “abnormality” → “abnormal”, “consult” →

“consultation”), abbreviations (e.g. “hx” → “history”, “fu” → “followup”), and common

synonyms (e.g. “assistance → “service”, “action” → “movement”).

Finally, we remove punctuation and generate term frequency representations of the

text using bag-of-words (BOW) with term frequency–inverse document frequency (TF-

IDF) weighting [57]. Bag-of-words (BOW) model is a simplifying representation in natural

language processing. It represents text (such as sentence or document) as a vector of

word occurrence count. TF-IDF, is a score that reweighs the BOW matrix to reflect how

important a word is to a document in a collection or corpus. We implement this with

scikit-learn [51]. For prostate cancer, we select for the top 500 most frequent features using

only unigrams. For NSCLC, we select for the top 1000 most frequent features using both

unigrams and bigrams, and apply a document frequency threshold strictly lower than 0.7 to
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filter out dataset-specific stopwords. Although there are more prostate cancer patients, the

lower number of death events makes it more difficult to include as many covariates when

performing survival analysis. Hence, we have 500 unstructured covariates for prostate

cancer and 1000 unstructured covariates for NSCLC.

We scale and normalize both the structured and unstructured covariates before concate-

nating them. In total, we build 509 covariates for prostate cancer and 1007 covariates for

NSCLC. These covariates are then used to uncover potential dataset-specific confounders.

4.4 Outcomes

We define our survival outcome as (Yi, Ei), where Yi ∈ Z+ is the number of survival

days since the diagnosis and Ei ∈ {0, 1} is an indicator for whether a death event has

been observed during follow-up. The treatment, Wi ∈ {0, 1}, is an indicator for either

surgery, radiation, or monitoring, depending on the treatment group. The covariates, Xi,

includes the structured dataset pulled from the EMR data and the bag-of-words matrix

representation generated from EMR notes.

4.5 Uncover and Evaluate Confounders

We uncover interpretable potential confounders from the covariates and evaluate the con-

founders we’ve identified with survival analysis. The approach is shown in Figure 1B.

We find the potential confounders by identifying covariates that are predictive of both

treatment and survival outcome. We train prediction models for treatment (Wi = 1) and

the survival outcome (Yi, Ei) with Lasso [13] using glmnet [58]. Lasso is a L1−penalized

linear that can produce coefficients for covariates that are exactly zero, and is, hence, often

used for creating sparse models [59] or variable selection [12]. We select the intersection of

covariates with non-zero coefficients from both the treatment and survival outcome models
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as potential confounders. For surgery vs. radiation and surgery vs. active monitoring for

prostate cancer, we select the intersection covariates that correspond to the Lasso shrinkage

penalty for the most regularized model such that the error is within one standard error of

the minimum, lambda.1se. With radiation vs. monitoring for prostate cancer and surgery

vs. radiation for stage I NSCLC, we select the intersection covariates that correspond

to the shrinkage penalty that gives the minimum mean cross-validated error, lambda.min.

The intersection terms selected are more stable with lambda.1se. However, we choose

lambda.min for the latter two treatment groups because lambda.1se did not select any

covariates from the text.

We then evaluate each of the covariate combinations with propensity score adjusted

survival analysis. Propensity scores for patient i is the probability of receiving the treat-

ment of interest, Wi = 1, given the covariates Xi [60]. Conditional on the propensity

score, the distribution of observed covariates is expected to be the same in both branches

of the treatment group. It is often used to reduce the effect of confounding in observational

studies [60, 61]. In survival analysis, the hazard rate h(t|X) is the probability the patient

will die within time t given covariates X. The HR is the ratio of the hazard rate of the

two treatments. In survival outcomes analysis, the HR is treated as the treatment effect

of choosing the treatment of interest, Wi = 1.

We use the Cox-proportional hazard (Cox-PH) model to perform survival regression

[62]. We assume the proportional hazards condition [63], which states that covariates are

multiplicatively related to the hazard, e.g., a covariate may halve a subject’s hazard at any

given time t while the baseline hazard may vary. Hence, the effect of covariates estimated

by any proportional hazards model can be reported as the HR of the covariate.

In a Cox-PH model, the hazard rate of an individual is a linear function of their static

covariates and a population-level baseline hazard that changes over time. We adjust for
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covariates (e.g. patient age, race white, etc.) against duration of survival and a binary

variable indicating whether the outcome event has occurred. We estimate

h(t|X) = h0(t) exp
(
bwW +

p∑
j=1

bjXj

)
,

where p is the number of covariates, b0(t) the baseline hazard, bW the effect size of the

treatment, and bj the effect size of the jth covariate. The HR for a covariate is equal to ebi .

We define the HR of the treatment as ebw . The Lasso regularization can also be applied to

a Cox-PH model for variable selection.

We use 3 methods to estimate the HR:

• Nearest-Neighbor Matching on Propensity Score (matching) [16]: We perform nearest-

neighbor propensity score matching (NNM) on selected covariates and estimate the

HR on the matched population using a univariate Cox-PH model regressed on the

treatment.

• Inverse Propensity of Treatment Weighting (IPTW) [64, 16]: We estimate the HR

using a univariate Cox-PH model regressed on the treatment with inverse propensity

score weighting with stabilization [64]. The weights are defined as

wi = Wi + (1−Wi)
[ e(Xi)

1− e(Xi)

]

• Multivariate Cox Proportional Hazard (multi.coxph) [62, 65, 5]: We estimate the HR

using a multivariate regression model on the treatment and selected covariates to see

how covariates interact with each other. The multivariate model is also weighted

with the inverse propensity scores above to form a doubly-robust model.

All Cox-PH models are trained using the survival R package [66] with robust variance.
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NNM is performed using the Matching R package [67].

We estimate the propensity scores using logistic regression [68] with glmnet [58],

stochastic gradient boosting [69] with gbm [70], and generalized random forests with grf

[25]. We select the propensity score estimation method with the best overlap and covariate

balance post propensity score adjustment.

We then compare the 3 methods for estimating HR using forest plots.

For each covariate in struct+intersect, we also show the univariate and multivariate

Cox-PH model HR, 95% HR confidence interval, and p-value, using the analysis presented

in Bradburn et al. [65]. Note that for the multivariate Cox-PH covariate analysis, we do

not weight the model with the inverse propensity scores.

5 Data availability

The datasets analyzed for the study are not publicly available. The EHR data cannot be

redistributed to researchers other than those approved through the Stanford Institutional

Review Board. We have therefore given detailed description of our data selection and

processing pipeline in the Methods section.

6 Code availability

The training and statistical evaluation code can be made available upon request to the

corresponding author.
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A Glossary of Structured Covariates

Table 7 shows a glossary of the structured features extracted from the EMRs.

B Dictionary of Synonymns

• {“abnormality” → “abnormal”, “admission” → “admit”, “assistance” → “assistant”,

“bilateral” → “bilaterally”, “bleeding” → “bleed”, “consult” → “consultation”, “di-

agnostic” → “diagnosis”, “evaluate” → “evaluation”, “hx” → “history”, “functional”
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Table 7: Glossary of structured features extracted from EMR data. The types of variables
include: binary (B), categorical(C), and continuous (CT).

Feature Type Description

Demographic race white B 1 if patient identifies as race white

race black B 1 if patient identifies as race black

race api B 1 if patient identifies as race asian or pacific islander

hispanic B 1 if patient identifies as hispanic

nonhispanic B 1 if patient identifies as nonhispanic

patient age C age split into 7 categories

Cancer Description clinical stage C clinical stage categories

tumor grade C tumor grade categories

grade unknown B 1 if patient grade is unknown

diagnosis year CT year initial diagnosis is recorded

→ “function”, “fu” → “followup”, “gentleman” → “man”, “disease” → “illness”,

“imaging” → “image”, “improvement” → “improve”, “invasion” → “invasive”, “ac-

tion” → “movement”, “neurologic” → “neurological”, “operative” → “operation”,

”polyps” → “polyp”, “postop” → “postoperative”, “pulse” → “rate”, “reaction” →

“reactive”, “refer” → “referral”, “removal” → “remove”, “resp” → “respiratory”,

“smoke” → “smoking”, “assistance” → “service”, “spinal” → “spine”, “surgical” →

“surgery”, “assessment” → “test”, “testing” → “test”, “therapeutic” → “therapy”,

“treat” → “treatment”, “visualize” → “visual”}

C Confounders

Confounding is a major challenge when estimating causal effect from observational studies.

The structure of confounding can be represented by causal diagrams. In Figure 5, we

present a series of Directed Acyclic Graphs (DAGs) that show different causal structures
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with potential confounding, based on the examples in Hernán and Robins [11], Chapter 7.

In the following diagrams, we define Y as the outcome, W as the treatment, and X as the

covariate that has been identified as a potential confounder.

Figure 5A shows the most natural case of confounding. Treatment W is a cause of

outcome Y and confounder X is a cause of both W and Y . Therefore, the association

between W and Y includes both the direct causal effect and an indirect “backdoor” path

from W to Y through X. Conditioning on the confounder X blocks this second path,

allowing the accurate estimation of the causal effect of W on Y . Examples of this type of

confounder include fixed patient characteristics such as a patient’s age or cancer clinical

stage. For example, older patients can have worse survival outcomes, so doctors might

assign different treatments to older patients; cancer patients with higher clinical stage can

also have worse survival outcomes, affecting doctors’ treatment decisions. Our method is

designed to uncover and adjust for this type of confounder, as is appropriate.

Figures 5B and 5C show different structures where W is a cause of Y , where X is

a cause of one and associated with the other through an unmeasured cause U . In these

cases, conditioning on confounder X blocks the “backdoor” path between W and Y ; in

such cases, conditioning on X is necessary to avoid bias in estimating the causal effect of W

on Y , since part of the correlation between X and Y arises due to the relationship between

(U) and both W and Y . Confounding of type 5B can arise when U represents a type of

lung cancer mutation. Even if a mutation test is not performed (and so the mutation is

unobserved), the mutation (U) affects the symptoms recorded in the notes (X), as well as

the patient outcomes (Y ). An example of 5B uncovered from our NSCLC study is left.low,

tumor location on the left lower lobe. Location of cancer (X) directly effects treatment

decisions, and EGFR mutated lung cancer (U) is less likely to be positioned in the lower

lobe [40]. For these examples, conditioning on the text describing the cancer location is
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appropriate, and is necessary if the backdoor path is not blocked by other covariates X.

Figure 5D shows a structure where W is a cause of Y , and X is a cause of neither

of them. In 5D, conditioning on X will not eliminate the backdoor path between W and

Y , but it might reduce its effect. Confounding of type 5D may arise when U represents

patient “performance status” (a measure of how the disease impacts the patient’s daily

living abilities), which is not typically recorded in the patient’s chart as a structured field,

but can directly effect both treatment decision and survival outcome [43]. Some examples

of 5D uncovered from our NSCLC study include discomfort, alert, and attention.

Figure 5E shows a structure where W is a cause of X, but not a cause of Y . In such

cases, conditioning on X introduces a backdoor path between W and Y . Confounding of

the type shown in 5E can arise when X represents short-term effects post treatment and

U represents patient health status. Our study design avoids such cases by only considering

pre-treatment covariates.

Figure 5F shows a structure where W and Y are causes of X. In this case, the covariate

X is referred to as a collider, and conditioning on X introduces a backdoor path between

W and Y . Our study design also avoids such cases by only considering pre-treatment

covariates.

Figure 5G show another structure where W is a cause of Y , and X is a cause of

neither of them. Unlike 5D, conditioning on X in 5G opens a backdoor path between

W and Y , introducing bias into the causal estimate of the effect of W on Y . Situations

such as 5G are a potential limitation of our methodology, but in some cases they can be

recognized through inspection and reasoning. Examples of 5G are words selected in earlier

iterations of our study such as menlo, referring to the location Menlo Park, CA. A patient’s

education level (U1) can effect both their treatment preference and also their living location;

a patient’s socioeconomic status (U2) can effect their survival outcome and living location.
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Although menlo is associated with treatment and outcome through U1 and U2, treating it

as a confounder would introduce bias. We were able to filter out some of these terms by

selecting only biomedical-related terms. Clinical expertise is needed to avoid scenario 5G.

Figure 5: Causal diagrams showing different potential cases of confounders.

D Propensity Score and Covariate Balance Plots

We show the propensity scores and covariate balance plots for each of the results plotted

in Figure 3. In Figure 6, we show the plots for structured. In Figure 7, we show the plots

for intersect. In Figure 8, we show the plots for struct+intersect.

E Covariate Correlation

We show the R2 values for all combinations of the selected covariates for each of the

treatment groups. The R2 is the square of the correlation from linear regression. It

measures the proportion of variation in the dependent variable that can be attributed to

the independent variable. In Table 8, we show the R2 values for surgery vs. radiation for

prostate cancer. In Table 9, we show the R2 values for surgery vs. monitoring for prostate
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(a) Surgery vs Radiation (prostate, grf)

(b) Surgery vs Monitoring (prostate, glmnet)

(c) Monitoring vs Radiation (prostate, glmnet)

(d) Surgery vs Radiation (lung, grf)

Figure 6: Supplementary plots to the structured results presented in Figure 3. (left)
Propensity score plot with structured. (middle) Covariate balance plot for matching. (right)
Covariate balance plots for IPTW.
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(a) Surgery vs Radiation (prostate, grf)

(b) Surgery vs Monitoring (prostate, glmnet)

(c) Monitoring vs Radiation (prostate, glmnet)

(d) Surgery vs Radiation (lung, grf)

Figure 7: Supplementary plots to the intersect results presented in Figure 3. (left) Propen-
sity score plot with intersect. (middle) Covariate balance plot for matching. (right) Co-
variate balance plots for IPTW.
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(a) Surgery vs Radiation (prostate, grf)

(b) Surgery vs Monitoring (prostate, glmnet)

(c) Monitoring vs Radiation (prostate, glmnet)

(d) Surgery vs Radiation (lung, grf)

Figure 8: Supplementary plots to the struct+intersect results presented in Figure 3. (left)
Propensity score plot with struct+intersect. (middle) Covariate balance plot for matching.
(right) Covariate balance plots for IPTW.
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cancer. In Table 10, we show the R2 values for radiation vs. monitoring for prostate

cancer. In Table 11, we show the R2 values for surgery vs. radiation for NSCLC.
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Table 8: R2 correlation of the struct+intersect covariates of surgery vs. radiation for prostate cancer.

patient age bladder urothelial race white race api race black hispanic clinical stage tumor grade grade unknown diagnosis year

patient age 0.04 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02

bladder 0.04 0.47 0.01 0.00 0.00 0.00 0.04 0.03 0.00 0.00

urothelial 0.01 0.47 0.01 0.00 0.00 0.00 0.04 0.03 0.00 0.00

race white 0.00 0.01 0.01 0.22 0.07 0.05 0.00 0.00 0.00 0.03

race api 0.00 0.00 0.00 0.22 0.00 0.01 0.00 0.00 0.00 0.00

race black 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00

hispanic 0.01 0.00 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.00

clinical stage 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.04 0.01 0.03

tumor grade 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.04 0.51 0.21

grade unknown 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.51 0.02

diagnosis year 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.03 0.21 0.02
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Table 9: R2 correlation of the struct+intersect covariates of surgery vs. monitoring for prostate cancer.

patient age carotid resident race white race api race black hispanic clinical stage tumor grade grade unknown diagnosis year

patient age 0.02 0.00 0.00 0.01 0.01 0.00 0.04 0.01 0.01 0.07

carotid 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

resident 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

race white 0.00 0.00 0.00 0.17 0.06 0.02 0.00 0.00 0.00 0.00

race api 0.01 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.01

race black 0.01 0.00 0.01 0.06 0.00 0.00 0.00 0.00 0.00 0.00

hispanic 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

clinical stage 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.01 0.06

tumor grade 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.05 0.66 0.22

grade unknown 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.66 0.04

diagnosis year 0.07 0.00 0.00 0.00 0.01 0.00 0.00 0.06 0.22 0.04
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Table 10: R2 correlation of the struct+intersect covariates of radiation vs. monitoring for prostate cancer.

patient age carotid resident race white race api race black hispanic clinical stage tumor grade grade unknown diagnosis year

patient age 0.02 0.00 0.00 0.01 0.01 0.00 0.04 0.01 0.01 0.07

carotid 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

resident 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

race white 0.00 0.00 0.00 0.17 0.06 0.02 0.00 0.00 0.00 0.00

race api 0.01 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.01

race black 0.01 0.00 0.01 0.06 0.00 0.00 0.00 0.00 0.00 0.00

hispanic 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

clinical stage 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.01 0.06

tumor grade 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.05 0.66 0.22

grade unknown 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.66 0.04

diagnosis year 0.07 0.00 0.00 0.00 0.01 0.00 0.00 0.06 0.22 0.04
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Table 11: R2 correlation of the struct+intersect covariates of surgery vs. radiation for NSCLC.

patient age race api sex diagnosis year alert alk allergy appearance attention cyst discomfort eye fever inguinal nipple rib severe silhouette sponge squamous race white race black hispanic

patient age 0.00 0.01 0.04 0.01 0.00 0.00 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00

race api 0.00 0.00 0.03 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.30 0.00 0.01

sex 0.01 0.00 0.04 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.01 0.00 0.02 0.02 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.00

diagnosis year 0.04 0.03 0.04 0.11 0.01 0.03 0.02 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00

alert 0.01 0.02 0.01 0.11 0.00 0.02 0.04 0.01 0.00 0.01 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

alk 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

allergy 0.00 0.00 0.01 0.03 0.02 0.00 0.02 0.00 0.00 0.00 0.01 0.04 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

appearance 0.02 0.03 0.01 0.02 0.04 0.00 0.02 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

attention 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

cyst 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

discomfort 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

eye 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

fever 0.00 0.00 0.00 0.01 0.05 0.00 0.04 0.03 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

inguinal 0.00 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

nipple 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

rib 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

severe 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01

silhouette 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sponge 0.01 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00

squamous 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

race white 0.00 0.30 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.04 0.04

race black 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00

hispanic 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.04 0.00
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