Abstract
Individual-based models have become important tools in the global battle against infectious diseases, yet model complexity can make calibration to biological and epidemiological data challenging. We propose a novel approach to calibrate disease transmission models via a Bayesian optimization framework employing machine learning emulator functions to guide a global search over a multi-objective landscape. We demonstrate our approach by application to an established individual-based model of malaria, optimizing over a high-dimensional parameter space with respect to a portfolio of multiple fitting objectives built from datasets capturing the natural history of malaria transmission and disease progression. Outperforming other calibration methodologies, the new approach quickly reaches an improved final goodness of fit. Per-objective parameter importance and sensitivity diagnostics provided by our approach offer epidemiological insights and enhance trust in predictions through greater interpretability.
One Sentence Summary We propose a novel, fast, machine learning-based approach to calibrate disease transmission models that outperforms other methodologies
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The work was funded by the Swiss National Science Foundation through SNSF Professorship of MAP (PP00P3_170702) supporting MAP, MG, and LB. TR was supported by Bill & Melinda Gates Foundation Project OPP1032350. EC research is supported by funding from the Bill & Melinda Gates Foundation to Curtin University (Opportunity ID: OPP1197730).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N.A.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.