Abstract
Platelets have been seen traditionally as fragments of blood mediating coagulation. However, evidence during malaria infection suggests that platelets also act against merozoites, an infectious form of malaria in the bloodstream, and megakaryocytes can release giant platelets with a larger volume than normal platelets. We propose a mathematical model to study the interaction between red blood cells, merozoites, and platelets during malaria infection. We analyzed two cases of the interaction of platelets with malaria infection. In the first one, we considered the isolated action of normal platelets and, in the second one, the joint antiparasitic action of both normal and giant platelets. Numerical simulations were performed to evaluate the stability of the equilibrium points of the system of equations. The model showed that the isolated antiparasitic action of normal platelets corroborates malaria infection control. However, the system can converge to a presence-merozoite equilibrium point, or an oscillatory behavior may appear. The joint antiparasitic action of both normal and giant platelets eliminated the oscillatory behavior and drove the dynamics to converge to lower parasitic concentration than the case of isolated action of normal platelets. Moreover, the joint antiparasitic action of platelets proved more easily capable of eliminating the infection.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
FAR thanks the Coordination of Superior Level Staff Improvement (CAPES) for the financial support (Finance Code 001).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This paper does not include animal and/or human trials
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.