Abstract
Aging is accompanied by a loss of muscle mass and function, termed sarcopenia, which causes numerous morbidities and economic burdens in human populations. Mechanisms implicated in age-related sarcopenia include inflammation, muscle stem cell depletion, mitochondrial dysfunction and loss of motor neurons, but whether there are key drivers of sarcopenia is not yet known. To gain deeper insights into age-related sarcopenia, we performed transcriptome profiling on lower limb muscle biopsies from 72 young, old and sarcopenic subjects using bulk RNA-seq (N = 72) and single-nuclei RNA-seq (N = 17). This combined approach revealed novel changes in gene expression that occur with age and sarcopenia in multiple cell types comprising mature skeletal muscle. Notably, we found increased expression of the genes MYH8 and PDK4, and decreased expression of the gene IGFN1, in old muscle. We validated key genes in fixed human muscle tissue using digital spatial profiling. We also identified a small population of nuclei that express CDKN1A, present only in aged samples, consistent with p21-driven senescence in this subpopulation. Overall, our findings identify unique cellular subpopulations in aged and sarcopenic skeletal muscle, which will facilitate the development of new therapeutic strategies to combat age-related sarcopenia.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
JPN was supported by a Canadian Institutes of Health Research (CIHR) Postdoctoral Fellowship. MAT was supported by a CIHR Foundation Grant (143325). Further support to JC and SM was from Astellas Pharmaceuticals, and NIH AG061879 (SM), AG051129(SM), and AG055822(SM & JC).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
All methods and procedures in this study were approved by the Hamilton Integrated Research Ethics Board (HIREB 2018-4656-GRA). Study participants were informed about potential risks of participation prior to giving informed consent. This study was part of a larger research project and collaboration between McMaster University (MAT), Exerkine Corporation (MAT), and Buck Institute for Research on Aging (Simon Melov, Novato, CA, USA) for evaluation of biomarkers of aging and muscle loss across different levels of sarcopenia. Specifically, some of the blood and muscle samples obtained at baseline from the participants were used for biomarker screening (muscle transcriptomics and serum proteomic analysis). Descriptive data and specific test outcomes, such as appendicular lean mass, maximal strength, and functional test results at baseline, were also shared between projects for characterization of subjects. This clinical trial was also registered at clinicaltrials.gov (NCT03536871).
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Bulk and single cell RNA-seq counts and raw data have been posted on Gene Expression Omnibus (GEO), and will be released upon manuscript acceptance.