Abstract
The COVID-19 pandemic is a major global societal, economic and health threat. The availability of COVID-19 vaccines has raised hopes for a decline in the pandemic. We built upon a stochastic agent-based microsimulation model of the COVID-19 epidemic in France. We examined the potential impact of different vaccination strategies, defined according to the age, medical conditions, and expected vaccination acceptance of the target non-immunized adult population, on disease cumulative incidence, mortality, and number of hospital admissions. Specifically, we examined whether these vaccination strategies would allow to lift all non-pharmacological interventions (NPIs), based on a sufficiently low cumulative mortality and number of hospital admissions. While vaccinating the full adult non-immunized population, if performed immediately, would be highly effective in reducing incidence, mortality and hospital-bed occupancy, and would allow discontinuing all NPIs, this strategy would require a large number of vaccine doses. Vaccinating only adults at higher risk for severe SARS-CoV-2 infection, i.e. those aged over 65 years or with medical conditions, would be insufficient to lift NPIs. Immediately vaccinating only adults aged over 45 years, or only adults aged over 55 years with mandatory vaccination of those aged over 65 years, would enable lifting all NPIs with a substantially lower number of vaccine doses, particularly with the latter vaccination strategy. Benefits of these strategies would be markedly reduced if the vaccination was delayed, was less effective than expected on virus transmission or in preventing COVID-19 among older adults, or was not widely accepted.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work did not receive any external funding.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This simulation study was based on a stochastic agent-based model of the epidemic of COVID-19. No necessary IRB and/or ethics committee since no real patients or participants were included.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Source code of the model has been deposited in a recognized public source code repository (GitHub, https://github.com/henrileleu/covid19).