Abstract
Introduction We hypothesized that an interpretable gradient boosting machine (GBM) model considering comorbidities, P-wave and echocardiographic measurements, can better predict mortality and cerebrovascular events in mitral regurgitation (MR).
Methods Patients from a tertiary center were analyzed. The GBM model was used as an interpretable statistical approach to identify the leading indicators of high-risk patients with either outcome of CVAs and all-cause mortality.
Results A total of 706 patients were included. GBM analysis showed that age, systolic blood pressure, diastolic blood pressure, plasma albumin levels, mean P-wave duration (PWD), MR regurgitant volume, left ventricular ejection fraction (LVEF), left atrial dimension at end-systole (LADs), velocity-time integral (VTI) and effective regurgitant orifice were significant predictors of TIA/stroke. Age, sodium, urea and albumin levels, platelet count, mean PWD, LVEF, LADs, left ventricular dimension at end systole (LVDs) and VTI were significant predictors of all-cause mortality. The GBM demonstrates the best predictive performance in terms of precision, sensitivity c-statistic and F1-score compared to logistic regression, decision tree, random forest, support vector machine, and artificial neural networks.
Conclusion Gradient boosting model incorporating clinical data from different investigative modalities significantly improves risk prediction performance and identify key indicators for outcome prediction in MR.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
none
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The territory-wide retrospective study was approved by The Joint Chinese University of Hong Kong - New Territories East Cluster Clinical Research Ethics Committee.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.