Summary
Background The announcement of efficacious vaccine candidates against SARS-CoV-2 has been met with worldwide acclaim and relief. Many countries already have detailed plans for vaccine targeting based on minimising severe illness, death and healthcare burdens. Normally, relatively simple relationships between epidemiological parameters, vaccine efficacy and vaccine uptake predict the success of any immunisation programme. However, the dynamics of vaccination against SARS-CoV-2 is made more complex by age-dependent factors, changing levels of infection and the potential relaxation of non-pharmaceutical interventions (NPIs) as the perceived risk declines.
Methods In this study we use an age-structured mathematical model, matched to a range of epidemiological data in the UK, that also captures the roll-out of a two-dose vaccination programme targeted at specific age groups.
Findings We consider the interaction between the UK vaccination programme and future relaxation (or removal) of NPIs. Our predictions highlight the population-level risks of early relaxation leading to a pronounced wave of infection, hospital admissions and deaths. Only vaccines that offer high infection-blocking efficacy with high uptake in the general population allow relaxation of NPIs without a huge surge in deaths.
Interpretation While the novel vaccines against SARS-CoV-2 offer a potential exit strategy for this outbreak, this is highly contingent on the infection-blocking (or transmission-blocking) action of the vaccine and the population uptake, both of which need to be carefully monitored as vaccine programmes are rolled out in the UK and other countries.
Evidence before this study Vaccination has been seen as a key tool in the fight against SARS-CoV-2. The vaccines already developed represent a major technological achievement and have been shown to generate significant immune responses, as well as offering considerable protection against disease. However, to date there is limited information on the degree of infection-blocking these vaccines are likely to induce. Mathematical models have already successfully been used to consider age- and risk-structured targeting of vaccination, highlighting the importance of prioritising older and high-risk individuals.
Added value of this study Translating current knowledge and uncertainty of vaccine behaviour into meaningful public health messages requires models that fully capture the within-country epidemiology as well as the complex roll-out of a two-dose vaccination programme. We show that under reasonable assumptions for vaccine efficacy and uptake the UK is unlikely to reach herd immunity, which means that non-pharmaceutical interventions cannot be released without generating substantial waves of infection.
Implications of all the available evidence Vaccination is likely to provide substantial individual protection to those receiving two doses, but the degree of protection to the wider population is still uncertain. While substantial immunisation of the most vulnerable groups will allow for some relaxation of controls, this must be done gradually to prevent large scale public health consequences.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research was funded by the National Institute for Health Research (NIHR) [Policy Research Programme, Mathematical \& Economic Modelling for Vaccination and Immunisation Evaluation, and Emergency Response; NIHR200411], the Medical Research Council through the COVID-19 Rapid Response Rolling Call [grant number MR/V009761/1] and through the JUNIPER modelling consortium [grant number MR/V038613/1]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The views expressed are those of the authors and not necessarily those of the funders.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The data were supplied from the CHESS database after anonymisation under strict data protection protocols agreed between the University of Warwick and Public Health England. The ethics of the use of these data for these purposes was agreed by Public Health England with the Governments SPI-M(O) and SAGE committees.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Updated to include: the new UK dosing priority schedule (delaying the second dose until 12 weeks); the increased spread of the new variant; the new UK lock-down restrictions introduced in early January 2020 and their impact on R; updated the vaccine parameters in light of the latest publications.
Data Availability
The data were supplied from the CHESS database after anonymisation under strict data protection protocols agreed between the University of Warwick and Public Health England.