Abstract
Seasonality of respiratory diseases has been linked, among other factors, to low outdoor absolute humidity and low relative humidity in indoor environments, which increase evaporation of water in the mucosal layer lining the respiratory tract. We demonstrate that normal breathing results in an absorption-desorption cycle inside facemasks, where super-saturated air is absorbed by the mask fibers during expiration, followed by evaporation during inspiration of dry environmental air. For double-layered cotton masks, which have considerable heat capacity, the temperature of inspired air rises above room temperature, and the effective increase in relative humidity can exceed 100%. We propose that the recently reported, disease-attenuating effect of generic facemasks is dominated by the strong humidity increase of inspired air.
SIGNIFICANCE STATEMENT Facemasks are the most widely used tool for mitigating the spread of the COVID-19 pandemic. Decreased disease severity by the wearer has also been linked to the use of cloth facemasks. This well-documented finding is surprising considering that such masks are poor at filtering the smallest aerosol particles, which can reach the lower respiratory tract and have been associated with severe disease. We show that facemasks strongly increase the effective humidity of inhaled air, thereby promoting hydration of the respiratory epithelium which is known to be beneficial to the immune system. Increased humidity of inspired air could be an alternate explanation for the now well-established link between mask wearing and lower disease severity.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding was received
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The National Institutes of Health (NIH) Office of IRB Operations (IRBO) determined that the activities proposed do not require IRB review or approval for the following reason: The project does not qualify as human subjects research (45 CFR 46.102) in that the activities do not qualify as research as defined in the federal regulations.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.