Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has infected millions worldwide and there is an urgent need to increase our diagnostic capacity to identify infected cases. Although RT-qPCR remains the gold standard for SARS-CoV-2 detection, this method requires specialised equipment in a diagnostic laboratory and has a long turn-around time to process the samples. To address this, several groups have recently reported development of loop-mediated isothermal amplification (LAMP) as a simple, low cost and rapid method for SARS-CoV-2 detection. Herein we present a comparative analysis of three LAMP-based assays that target different regions of the SARS-CoV-2: ORF1ab RdRP, ORF1ab nsp3 and Gene N. We perform a detailed assessment of their sensitivity, kinetics and false positive rates for SARS-CoV-2 diagnostics in LAMP or RT-LAMP reactions, using colorimetric or fluorescent detection. Our results independently validate that all three assays can detect SARS-CoV-2 in 30 minutes, with robust accuracy at detecting as little as 1000 RNA copies and the results can be visualised simply by color changes. We also note the shortcomings of these LAMP-based assays, including variable results with shorter reaction time or lower load of SARS-CoV-2, and false positive results in some experimental conditions. Overall for RT-LAMP detection, the ORF1ab RdRP and ORF1ab nsp3 assays have higher sensitivity and faster kinetics for detection, whereas the Gene N assay exhibits no false positives in 30 minutes reaction time. This study provides validation of the performance of LAMP-based assays for SARS-CoV-2 detection, which have important implications in development of point-of-care diagnostic for SARS-CoV-2.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
RCBW is supported by the National Health and Medical Research Council, the University of Melbourne and the Centre for Eye Research Australia. DU and RL are supported by the Melbourne Research Scholarship from the University of Melbourne. PK is supported by a Medical Research Future Fund Fellowship (MRF1136427). The Centre for Eye Research Australia receives operational infrastructure support from the Victorian Government.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data can be accessed by contacting the corresponding author.
Abbreviations
- SARS-CoV-2
- Severe Acute Respiratory Syndrome Coronavirus 2
- LAMP
- loop-mediated isothermal amplification
- RT-LAMP
- Reverse transcription loop-mediated isothermal amplification
- RT-qPCR
- Reverse transcription quantitative PCR
- RdRP
- RNA-dependent RNA polymerase
- nsp3
- non-structural protein 3
- Gene N
- Nucleocapsid gene.