Abstract
Background Pneumonia is a leading cause of morbidity and mortality worldwide, particularly among the developing nations. Pneumonia is the most common cause of death in children due to infectious etiology. Early and accurate Pneumonia diagnosis could play a vital role in reducing morbidity and mortality associated with this ailment. In this regard, the application of a new hybrid machine learning vision-based model may be a useful adjunct tool that can predict Pneumonia from chest X-ray (CXR) images.
Aim & Objective we aimed to assess the diagnostic accuracy of hybrid machine learning vision-based model for the diagnosis of Pneumonia by evaluating chest X-ray (CXR) images
Materials & Methods A total of five thousand eight hundred and fifty-six digital X-ray images of children from ages one to five were obtained from the Chest X-Ray Pneumonia dataset using the Kaggle site. The dataset contains fifteen hundred and eighty-three digital X-ray images categorized as normal, where four thousand two hundred and seventy-three digital X-ray images are categorized as Pneumonia by an expert clinician. In this research project, a new hybrid machine learning vision-based model has been evaluated that can predict Pneumonia from chest X-ray (CXR) images. The proposed model is a hybrid of convolutional neural network and tree base algorithms (random forest and light gradient boosting machine). In this study, a hybrid architecture with four variations and two variations of ResNet architecture are employed, and a comparison is made between them.
Results In the present study, the analysis of digital X-ray images by four variations of hybrid architecture RN-18 RF, RN-18 LGBM, RN-34 RF, and RN-34 LGBM, along with two variations of ResNet architecture, ResNet-18 and ResNet-30 have revealed the diagnostic accuracy of 97.78%, 96.42%, 97.1%,96.59%, 95.05%, and 95.05%, respectively.
Discussion The analysis of the present study results revealed more than 95% diagnostic accuracy for the diagnosis of Pneumonia by evaluating chest x-ray images of children with the help of four variations of hybrid architectures and two variations of ResNet architectures. Our findings are in accordance with the other published study in which the author used the deep learning algorithm Chex-Net with 121 layers.
Conclusion The hybrid machine learning vision-based model is a useful tool for the assessment of chest x rays of children for the diagnosis of Pneumonia.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
None
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethical committee of The University of Lahore approved this research
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes