ABSTRACT
Background Syndromic surveillance systems for COVID-19 are being increasingly used to track and predict outbreaks of confirmed cases. Seasonal circulating respiratory viruses share syndromic overlap with COVID-19, and it is unknown how they will impact the performance of syndromic surveillance tools. Here we investigated the role of non-SARS-CoV-2 respiratory virus test positivity on COVID-19 two independent syndromic surveillance systems in Ontario, Canada.
Methods We compared the weekly number of reported COVID-19 cases reported in the province of Ontario against two syndromic surveillance metrics: 1) the proportion of respondents with a self-reported COVID-like illness (CLI) from COVID Near You (CNY) and 2) the proportion of emergency department visits for upper respiratory conditions from the Acute Care Enhanced Surveillance (ACES) system. Separately, we plotted the percent positivity for other seasonal respiratory viruses over the same time period and reported Pearson’s correlation coefficients before and after the uncoupling of syndromic tools to COVID-19 cases.
Results There were strong positive correlations of both CLI and ED visits for upper respiratory causes with COVID-19 cases up to and including a rise in entero/rhinovirus (r = 0.86 and 0.87, respectively). There was a strong negative correlation of both CLI and ED visits for upper respiratory causes with COVID-19 cases (r = −0.85 and −0.91, respectively) during a fall in entero/rhinovirus.
Interpretation Two methods of syndromic surveillance showed strong positive correlations with COVID-19 confirmed case counts before and during a rise in circulating entero/rhinovirus. However, as positivity for enterovirus/rhinovirus fell in late September 2020, syndromic signals became uncoupled from COVID-19 cases and instead tracked the fall in entero/rhinovirus. This finding provides proof-of-principle that regional transmission of seasonal respiratory viruses may complicate the interpretation of COVID-19 surveillance data. It is imperative that surveillance systems incorporate other respiratory virus testing data in order to more accurately track and forecast COVID-19 disease activity.
Competing Interest Statement
IIB has consulted to BlueDot, a social benefit corporation that tracks the spread of emerging infectious diseases
Funding Statement
No external funding was received for this work
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study was approved by the Research Ethics Board of the University of Toronto and a waiver of informed consent was granted because the data were collected for public health surveillance purposes.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The data that support the findings of this study are available from the corresponding author, LLS, upon reasonable request.