Abstract
Contact tracing and efficient testing can have an imperative part in mitigating the COVID-19 spread, with minimal social and economic disruption. Testing serves many purposes: isolating the COVID-19 positive tested individuals, identifying the contacts at the risk, and locating the hotspots and safe zones for administrative planning. However, it is a challenging task to identify the right individuals for the test in view of the high COVID -19 spread, a large number of presymptomatic and asymptomatic cases, and limited testing capabilities. The individuals for COVID -19 are currently identified based on direct-contact, travel history, and symptoms, which are more individualized and do not explicitly include a group risk assessment, and in turn, do not preclude the transmission from the superspreaders. Policymakers need to limit testing in the shortage of test resources, and focus on gaining the most information from the tests performed. In this work, we introduce a protocol for the identification of the group of individuals to be tested for acquiring maximum risk information of a community with minimum individual tests performed. Firstly, an algorithm is proposed to determine the risk profile of all the individuals in the community by incorporating serial and parallel pathways of the infection transmission considering multiple steps of transmission. Next, we consider several potential groups that could be tested from the community, and analyze them one by one for their comparison. In a group, few individuals can be positive, and the remaining few can be negative, generating sets of several test-outcomes with unequal probabilities. The protocol involves the probability calculation and reassessment of the network’s risk profile in all the test output cases. Finally, the best group is identified in all the groups studied, in which risk profiles between post and pre-test are maximally different. The analysis shows that in general, information increases with an increase in the group size. Notably, a strategically chosen small group may provide more information from the test results, than a standard larger group. The proposed systematic strategy would help in the selection of the right individuals for the testing, and in extracting far more information from the minimum samples, to effectively aid the epidemic mitigation. The protocol is generic, and can also be applied to any other epidemic spread in the future.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
Not applicable
Funding Statement
Not applicable.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Not applicable.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Algorithm of the code is provided.