Abstract
Background Clinical metagenomics (CMg) is being evaluated for translation from a research tool into routine diagnostic service, but its potential to significantly improve management of acutely unwell patients has not been demonstrated. The SARS-CoV-2 pandemic provides impetus to determine that benefit given increased risk of secondary infection and nosocomial transmission by multi-drug resistant (MDR) pathogens linked with expansion of critical care capacity.
Methods Prospective evaluation of CMg using nanopore sequencing was performed on 43 respiratory samples over 14 weeks from a cohort of 274 intubated patients across seven COVID-19 intensive care units.
Results Bacteria or fungi were cultured from 200 (73%) patients, with a predominance of Klebsiella spp. (31%) and C. striatum (7%) amongst other common respiratory pathogens. An 8 hour CMg workflow was 93% sensitive and 81% specific for bacterial identification compared to culture, and reported presence or absence of β-lactam resistance genes carried by Enterobacterales that would modify initial guideline-recommended antibiotics in every case. CMg was also 100% concordant with quantitative PCR for detecting Aspergillus fumigatus (4 positive and 39 negative samples). Single nucleotide polymorphism (SNP)-typing using 24 hour sequence data identified an MDR-K. pneumoniae ST307 outbreak involving 4 patients and an MDR-C. striatum outbreak potentially involving 14 patients across three ICUs.
Conclusion CMg testing for ICU patients provides same-day pathogen detection and antibiotic resistance prediction that significantly improves initial treatment of nosocomial pneumonia and rapidly detects unsuspected outbreaks of MDR-pathogens.
Competing Interest Statement
J.O.G. has received speaking honoraria, consultancy fees, in-kind contributions or research funding from Oxford Nanopore, Simcere, Becton-Dickinson and Heraeus Medica.
Funding Statement
This research was funded/supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' National Health Service (NHS) Foundation Trust and King's College London, the programme of Infection and Immunity (RJ112/N027) J.D.E and T.C. J.O.G was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Microbes in the Food Chain BB/R012504/1 and its constituent projects BBS/E/F/000PR10348, BBS/E/F/000PR10349, BBS/E/F/000PR10351, and BBS/E/F/000PR10352 and Innovate UK-China AMR grant TS/S00887X/1. A.J.P. was supported by the Quadram Institute Bioscience BBSRC funded Core Capability Grant (project number BB/CCG1860/1).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The full process for sample collection, nanopore sequencing, data linkage and anonymization was approved by a research ethical committee (North West Preston REC: reference 18/NW/0584).
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Sequence data presented in this study can be accessed on the European Nucleotide Archive (ENA) - study accession number PRJEB41184.