ABSTRACT
Background The development and widespread use of an effective SARS-CoV-2 vaccine could help prevent substantial morbidity and mortality associated with COVID-19 infection and mitigate many of the secondary effects associated with non-pharmaceutical interventions. The limited availability of an effective and licensed vaccine will task policymakers around the world, including in India, with decisions regarding optimal vaccine allocation strategies. Using mathematical modelling we aimed to assess the impact of different age-specific COVID-19 vaccine allocation strategies within India on SARS CoV-2-related mortality and infection.
Methods We used an age-structured, expanded SEIR model with social contact matrices to assess different age-specific vaccine allocation strategies in India. We used state-specific age structures and disease transmission coefficients estimated from confirmed Indian incident cases of COVID-19 between 28 January and 31 August 2020. Simulations were used to investigate the relative reduction in mortality and morbidity of vaccinate allocation strategies based on prioritizing different age groups, and the interactions of these strategies with several concurrent non-pharmacologic interventions (i.e., social distancing, mandated masks, lockdowns). Given the uncertainty associated with current COVID-19 vaccine development, we also varied several vaccine characteristics (i.e., efficacy, type of immunity conferred, and rollout speed) in the modelling simulations.
Results In nearly all scenarios, prioritizing COVID-19 vaccine allocation for older populations (i.e., >60yrs old) led to the greatest relative reduction in deaths, regardless of vaccine efficacy, control measures, rollout speed, or immunity dynamics. However, preferential vaccination of this target group often produced higher total symptomatic infection counts and more pronounced estimates of peak incidence than strategies which targeted younger adults (i.e., 20-40yrs or 40-60yrs) or the general population irrespective of age. Vaccine efficacy, immunity type, target coverage and rollout speed all significantly influenced overall strategy effectiveness, with the time taken to reach target coverage significantly affecting the relative mortality benefit comparative to no vaccination.
Conclusions Our findings support global recommendations to prioritize COVID-19 vaccine allocation for older age groups. Including younger adults in the prioritisation group can reduce overall infection rates, although this benefit was countered by the larger mortality rates in older populations. Ultimately an optimal vaccine allocation strategy will depend on vaccine characteristics, strength of concurrent non-pharmaceutical interventions, and region-specific goals such as reducing mortality, morbidity, or peak incidence.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding was received for this work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
No IRB approval was needed for this study since it involves mathematical modelling using data available in the public domain.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.