Abstract
Several tests based on chemiluminescence immunoassay techniques have become available to test for SARS-CoV-2 antibodies. There is currently insufficient data on serology assay performance beyond 35 days after symptoms onset. We aimed to evaluate SARS-CoV-2 antibody tests on three widely used platforms. A chemiluminescent microparticle immunoassay (CMIA; Abbott Diagnostics, USA), a luminescence immunoassay (LIA; Diasorin, Italy), and an electrochemiluminescence immunoassay (ECLIA; Roche Diagnostics, Switzerland) were investigated. In a multi-group study, sensitivity was assessed in a group of participants with confirmed SARS-CoV-2 (n=145), whereas specificity was determined in two groups of participants without evidence of COVID-19 (i.e. healthy blood donors, n=191, and healthcare workers, n=1002). Receiver operating characteristic (ROC) curves, multilevel likelihood ratios (LR), and positive (PPV) and negative (NPV) predictive values were characterized. Finally, analytical specificity was characterized in samples with evidence of Epstein–Barr virus (EBV) (n=9), cytomegalovirus (CMV) (n=7) and endemic common cold coronavirus infections (n=12) taken prior to the current SARS-CoV-2 pandemic. The diagnostic accuracy was comparable in all three assays (AUC 0.98). Using the manufacturers’ cut-offs, the sensitivities were 90%, 95% confidence interval,[84,94] (LIA), 93% [88,96] (CMIA), and 96% [91,98] (ECLIA). The specificities were 99.5% [98.9,99.8](CMIA) 99.7% [99.3,99,9] (LIA) and 99.9% [99.5,99.98] (ECLIA). The LR at half of the manufacturers’ cut-offs were 60 (CMIA), 82 (LIA), and 575 (ECLIA) for positive and 0.043 (CMIA) and 0.035 (LIA, ECLIA) for negative results. ECLIA had higher PPV at low pretest probabilities than CMIA and LIA. No interference with EBV or CMV infection was observed, whereas endemic coronavirus in some cases provided signals in LIA and/or CMIA. Although the diagnostic accuracy of the three investigated assays is comparable, their performance in low-prevalence settings is different. Introducing gray zones at half of the manufacturers’ cut-offs is suggested, especially for orthogonal testing approaches that use a second assay for confirmation.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The research project was funded by a grant from the government of the Principality of Liechtenstein and the Swiss National Science Foundation (Project ID 196544).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Cantonal ethics boards of Zurich (BASEC Req-20-00587) and Cantonal ethics board of Eastern Switzerland (EKOS; BASEC Nr. Reqs 2020-00502 and 2020-00586)
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The data used to support the findings in this study will be available from the corresponding author upon request.