Abstract
Background and Objective The COVID-19 pandemic has caused severe mortality across the globe with the USA as the current epicenter, although the initial outbreak was in Wuhan, China. Many studies successfully applied machine learning to fight the COVID-19 pandemic from a different perspective. To the best of the authors’ knowledge, no comprehensive survey with bibliometric analysis has been conducted on the adoption of machine learning for fighting COVID-19. Therefore, the main goal of this study is to bridge this gap by carrying out an in-depth survey with bibliometric analysis on the adoption of machine-learning-based technologies to fight the COVID-19 pandemic from a different perspective, including an extensive systematic literature review and a bibliometric analysis.
Methods A literature survey methodology is applied to retrieve data from academic databases, and a bibliometric technique is subsequently employed to analyze the accessed records. Moreover, the concise summary, sources of COVID-19 datasets, taxonomy, synthesis, and analysis are presented. The convolutional neural network (CNN) is found mainly utilized in developing COVID-19 diagnosis and prognosis tools, mostly from chest X-ray and chest computed tomography (CT) scan images. Similarly, a bibliometric analysis of machine-learning-based COVID-19-related publications in Scopus and Web of Science citation indexes is performed. Finally, a new perspective is proposed to solve the challenges identified as directions for future research. We believe that the survey with bibliometric analysis can help researchers easily detect areas that require further development and identify potential collaborators.
Results The findings in this study reveal that machine-learning-based COVID-19 diagnostic tools received the most considerable attention from researchers. Specifically, the analyses of the results show that energy and resources are more dispensed toward COVID-19 automated diagnostic tools, while COVID-19 drugs and vaccine development remain grossly underexploited. Moreover, the machine-learning-based algorithm predominantly utilized by researchers in developing the diagnostic tool is CNN mainly from X-rays and CT scan images.
Conclusions The challenges hindering practical work on the application of machine-learning-based technologies to fight COVID-19 and a new perspective to solve the identified problems are presented in this study. We believe that the presented survey with bibliometric analysis can help researchers determine areas that need further development and identify potential collaborators at author, country, and institutional levels to advance research in the focused area of machine learning application for disease control.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding was received
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
NA
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.