Abstract
There is an urgent need for ultra-rapid testing regimens to detect the SARS-CoV-2 [Severe Acute Respiratory Syndrome Coronavirus 2] virus infections in real-time within seconds to stop its spread. Current testing approaches for this RNA virus focus primarily on diagnosis by RT-qPCR, which is time-consuming, costly, often inaccurate and impractical for general population rollout due to the need for laboratory processing. The latency until the test result arrives with the patient has led to further virus spread. Furthermore, latest antigen rapid tests still require 15 to 30 min processing time and are challenging to handle. Despite increased PCR-test and antigen-test efforts the pandemic has entered the worldwide second stage. Herein, we applied a superfast reagent-free and non-destructive approach of attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy with subsequent chemometric analysis to the interrogation of virus-infected samples. Contrived samples with inactivated gamma-irradiated Covid-19 virus particles at levels down to 1582 copies/ml generated infrared (IR) spectra with good signal-to-noise ratio. Predominant virus spectral peaks are associated with nucleic acid bands, including RNA. At low copy numbers, the presence of virus particle was found to be capable of modifying the IR spectral signature of saliva, again with discriminating wavenumbers primarily associated with RNA. Discrimination was also achievable following ATR-FTIR spectral analysis of swabs immersed in saliva variously spiked with virus. Following on, we nested our test system in a clinical setting wherein participants were recruited to provide demographic details, symptoms, parallel RT-qPCR testing and the acquisition of pharyngeal swabs for ATR-FTIR spectral analysis. Initial categorisation of swab samples into negative versus positive Covid-19 infection was based on symptoms and PCR results. Following training and validation of a genetic algorithm-linear discriminant analysis (GA-LDA) algorithm, a blind sensitivity of 95% and specificity of 89% was achieved. This prompt approach generates results within two minutes and is applicable in areas with increased people traffic that require sudden test results such as airports, events or gate controls.
Competing Interest Statement
Francis L Martin, Maneesh N Singh and Patrick H Warnke are significant shareholders and hold significant positions in Biocel UK Ltd. This company currently has a pre-screening test system, based in part on the findings within this manuscript, under review for US FDA EUA approval. As such, Biocel UK Ltd declares a commercial interest.
Funding Statement
This study was supported by FAPES (#151/2020) and CNPq (#401870/2020-0).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study was carried out in agreement with the Helsinki declaration and authorized by the Hospitals Directive, due to the emergency situation. Ethical approval for the investigation was granted by the Ethics Committee Federal University of Espirito Santo (#0993920.1.0000.5071 and #31411420.9.0000.8207). Full ethical approval was given to undertake the studies described herein. All procedures and possible risks were explained to participants before they provided written consent.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.