Abstract
As economic woes of the COVID-19 pandemic deepen, strategies are being formulated to avoid the need for prolonged stay-at-home orders, while implementing risk-based quarantine, testing, contact tracing and surveillance protocols. Given limited resources and the significant economic, public health and operational challenges of the current 14-day quarantine recommendation, it is vital to understand if more efficient but equally effective quarantine and testing strategies can be deployed. To this end, we developed a mathematical model to quantify the probability of post-quarantine transmission that varied across a range of possible quarantine durations, timings of molecular testing, and estimated incubation periods. We found that a 13-day quarantine with testing on entry, a nine-day quarantine with testing on exit, and an eight-day quarantine with testing on both entry and exit each provide equivalent or lower probability of post-quarantine transmission compared to a 14-day quarantine with no testing. We found that testing on exit from quarantine is more effective in reducing probability of post-quarantine transmission than testing upon entry. When conducting a single test, testing on exit was most effective for quarantines of six days or shorter, while testing on day six or seven is optimal for longer quarantines. Optimal timing of testing during quarantine will reduce the probability of post-quarantine transmission, as false-positive results become less likely, enabling case isolation. Based on 4,040 SARS CoV-2 RT-PCR tests, an exit test 96 hours after the start of quarantine for an offshore oil rig population was demonstrated to identify all known asymptomatic cases that previously tested negative at entry, and—moreover—successfully prevented an expected seven or more offshore transmission events, each a serious concern for initiating rapid spread and a disabling outbreak in the close quarters of an offshore rig. This successful outcome highlights the importance of context-specific guidelines for the duration of quarantine and timing of testing that can minimize economic impacts, disruptions to operational integrity, and COVID-related public health risks.
Competing Interest Statement
JTP, GK,BS,RHM,SMM, APG received funding from the company who collected and provided data
Funding Statement
J.P.T. gratefully acknowledges funding from the National Science Foundation grant CCF 1918656, the Elihu endowment, Notsew Orm Sands Foundation, and BHP. G.K., B.S., and R.H.M acknowledge funding from BHP. S.M.M. acknowledges support from the Canadian Institutes of Health Research (grant OV4-170643; Canadian 2019 Novel Coronavirus Rapid Research), the Natural Sciences and Engineering Research Council of Canada, and BHP. A.P.G. gratefully acknowledges funding from NIH UO1-GM087719, the Burnett and Stender families' endowment, the Notsew Orm Sands Foundation, and BHP.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB Approval from the Office of Research Ethics (ORE) at York University, Toronto ON, Canada Certificate #: 2020-323 (Approval Document can be provided if requested)
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The number of positive tests and tests conducted at the two regions quarantining the crew members heading offshore are presented in Fig. 2, with other data used in the analysis referenced in Table S1 and in the Methods.