Abstract
Accurate measurement of daily infection incidence is crucial to epidemic response. However, delays in symptom onset, testing, and reporting obscure the dynamics of transmission, necessitating methods to remove the effects of stochastic delays from observed data. Existing estimators can be sensitive to model misspecification and censored observations; many analysts have instead used methods that exhibit strong bias or do not account for delays. We develop an estimator with a regularization scheme to cope with these sources of noise, which we term the Robust Incidence Deconvolution Estimator (RIDE). We validate RIDE on synthetic data, comparing accuracy and stability to existing approaches. We then use RIDE to study COVID-19 records in the United States, and find evidence that infection estimates from reported cases can be more informative than estimates from mortality data. To implement these methods, we release incidental, a ready-to-use R implementation of our estimator that can aid ongoing efforts to monitor the COVID-19 pandemic.
Competing Interest Statement
JAL has received honoraria from Kaiser Permanente unrelated to the current submission. JAL has received research grants and honoraria from Pfizer, research grants and honoraria from Merck, Sharp & Dohme, and honoraria from SutroVax unrelated to the current submission.
Funding Statement
JAL was supported by a grant from the University of California, Berkeley Population Center.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data used in this work are publicly available; sources are identified in the main text and supplemental material.